人教版(新)八上-11.2.1 三角形的内角【优质教案】

文档属性

名称 人教版(新)八上-11.2.1 三角形的内角【优质教案】
格式 doc
文件大小 102.5KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-08-09 13:52:20

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
11.2.1 三角形的内角
第1课时
[教学目标]
〔知识与技能〕
掌握三角形内角和定理。
〔过程与方法〕
在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯
〔情感、态度与价值观〕
体会数学与现实生活的联系,增强克服困难的勇气和信心
[重点难点] 三角形内角和定理是重点;三角形内角和定理的证明是难点。
[教学过程]
一、导入新课
我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?
二、三角形内角和的证明
回顾我们小学做过的实验,你是怎样操作的?
把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出
∠BCD的度数,可得到∠A+∠B+∠ACB=1800。[投影1]
图1
想一想,还可以怎样拼?
①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800。
图2
②把和剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=1800。
如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?
已知△ABC,求证:∠A+∠B+∠C=1800。
证明一
过点C作CM∥AB,则∠A=∠ACM,∠B=∠DCM,
又∠ACB+∠ACM+∠DCM=1800
∴∠A+∠B+∠ACB=1800。
即:三角形的内角和等于1800。
由图2、图3你又能想到什么证明方法?请说说证明过程。
三、例题
例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度?
分析:怎样能求出∠ACB的度数?
根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可。
∠CAB等于多少度?怎样求∠CBA的度数?
解:∠CBA=∠BAD-∠CAD=800-500=300
∵AD∥BE ∴∠BAD+∠ABE=1800
∴∠ABE=1800-∠BAD=1800-800=1000
∴∠ABC=∠ABE-∠EBC=1000-400=600
∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900
答:从C岛看AB两岛的视角∠ACB=1800是900。
四、课堂练习
课本13頁1、2题。
五作业:
16頁1、3、4;
六、教后记
第2课时
教学目标:
1.巩固上节课知识:“三角形内角和为180°”;“所有的三角形只能分为三类:锐角三角形、直角三角形、钝角三角形”;
2.认识直角三角形,探索图形性质;
3.得出结论:“直角三角形的两个锐角互余”;
教学方法:
此节课以探索直角三角形的内角性质为主,让同学们掌握“直角三角形的两个锐角互余”这点知识,课上可积极鼓励同学们发散思维,探索知识,利用作图工具尽量探索出直角三角形的特性。课堂以小组实践探索为主,最后大家互相展示自己小组探索、找到的直角三角形性质。最后老师归纳强调。此节选用以学为主的教学模式中的启发式教学策略与方法,让学生养成自主探索、合作交流的学习方式,引导学生在已有知识的基础上通过观察来总结理论知识.
教学过程:
1.回顾上节课所学知识:
师:(1)三角形内角和为180°;(2)所有的三角形只能分为三类:锐角三角形、直角三角形、钝角三角形。
( ppt显示一张“知识回顾”的主题页,以提问的方式,让同学自己回忆上节课知识,学生回答上一点,ppt显示一条;)
师:总结这一小节,做知识强调。(鼓励同学们的积极参与,激发积极性;)
随后ppt放映一张直角三角形的图片,
师:今天我们将要一块儿学习三角形里面特殊又别致的一个三角形,大家知道是什么嚒?
生:看到ppt,异口同声的说:直角三角形。
师:情绪很兴奋的表扬同学们说:对,今天我们学习探究的就是它——直角三角形。
(老师以此引入知识主题,进入学习)
2.课程探究: 随后ppt放映:关于“我们一起来动手”的动画提示。
师:(用激励提问的语气):“那么老师说它非一般,而且很特殊,那它到底有些什么样的特殊地方呢?下面我就请大家作为探宝者,把它的秘密都给发掘出来”。
师:将全班分组(五组以内),让同学们利用手里的工具(直尺、量角尺),随意构建任何大小的直角三角形,老师重点要求作出“直角等腰三角形”、“30°直角三角形”两个RT△,让后让同学利用量角尺量出各角的度数并记录(PPT显示数据记录表一),根据数据记录来发现、探究、总结直角三角形锐角之间的规律和联系。每个小组最后选出自己小组最好的两条结论做展示;
师(平和):“好了,现在掘宝时间到了,请各个小组展示你们探索到得秘密吧,老师拭目以待大家的惊奇发现哦”!
ppt随后显示一张小组结论统计表二:
让每个小组展示本组发现的最有规律的RT△各项数据;老师在PPT表格上记录,并给小组结论给予表扬和鼓励;
3.知识交流:老师通过同学给出的数据和结论,得出同学们的知识探究情况,以及得出书上的结论:直角三角形两个锐角互余;
对于要求探究的两个特殊RT△,
师:下面我们来看看大家对于老师给出的两个RT△有什么更独特的发现?随后PPT转换至这两个RT△。并让同学记录的数据中不断的鼓励刺激同学举手发表自己的见解,老师一步一步通过同学发言总结出知识点:1.等腰RT△的两个底角都为45 ;2.有一个角为30 RT△中,30 所对的边长是斜边的1/2;
师:最后表扬大家,做出积极评价
4.总结交流结果,串通知识:
师(喜悦的):通过前面大家的积极探索,我们今天就打开了RT△的特殊世界。下面我们再一块儿总结一下前面我们探究得到的知识点,请同学们大声告诉我(通过知识梳理,让大家对知识点加深映像):
PPT显示“知识梳理”(学生回答一点,显示一点)
生:1. 直角三角形两个锐角互余;
2.等边指教三角形的两个底角为45°;
师:同样的要是我们知道有一个RT△一个角为45°就可以推出?……
生:这个RT△为等边直角三角形;
师(微笑):…下一条
生:3.若RT△有一个角为30°,那么30°所对的边就等于斜边的1/2;(
师:如果知道一个RT△有一个角为30°,而且知道它角所对边长2.5,那么它的斜边长度是?…
生(停滞一会儿):5
师(满意的):请大家给自己掌声…
高兴的表扬大家;
2)布置课后练习题:一、二、四题
教学反思:
老师根据本节课同学们的课堂表现,积极反思教学过程,对这样的教学方法做出改进。了解同学们的自主学习、探索能力,为以后教学提供经验。
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)