北师大版(新)八上-2.6 实数【优质教案】

文档属性

名称 北师大版(新)八上-2.6 实数【优质教案】
格式 doc
文件大小 2.7MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-08-10 15:52:37

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
2.6 实数
实数及其性质
一、学生起点分析
实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
二、教学任务分析
本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义。
在本节之前学生已学方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。本节课的教学目标是:
1.了解实数的意义,能对实数按要求进行分类;
2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.
3.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
5.了解数系扩展对人类认识发展的必要性;
教学重点
1.了解实数意义,能对实数进行分类;
2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;
三、教学过程设计
本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:课堂练习;第六环节:归纳小结;
第一环节:复习引入新课
内容:问题:(1)什么是有理数?有理数怎样分类?
(2)什么是无理数?带根号的数都是无理数吗?
意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类
内容1:把下列各数分别填入相应的集合内:
,,,,,,,,
,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
知识整理:有理数和无理数统称为实数。
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。
效果:学生动手填写,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。
内容2:1.你能把上面各数分别填入下面相应的集合内吗?
2.0属于正数吗?0属于负数吗?
知识整理:无理数和有理数一样,也有正负之分。
1.从符号考虑,实数可以分为正实数、0、负实数,即:


2.另外从实数的概念也可以进行如下分类:
意图:在实数概念形成的基础上对实数进行不同的分类。上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类。提醒学生分类可以有不同的方法,但要按同一标准不重不漏。
效果:让学生讨论回答,形成共识:实数也可以分为正实数、0、负实数,并体会到了分类中不能出现遗漏和重复的要求。
第三环节:实数的相关概念
内容1:1.在有理数中,数a的相反数是什么?绝对值是什么?当a不为0时,它的倒数是什么?
2.的相反数是什么?的倒数是什么?,0,—π的绝对值分别是什么?
意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的。
效果:学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义。
内容2:想一想:
1.3—π的绝对值是 。
2.想一想:a是一个实数,它的相反数是 ,它的绝对值是 ,当a≠0时,它的倒数是 。
知识整理
(1)相反数:a与—a互为相反数;0的相反数仍是0;
(2)倒数:当a≠0时,a与互为倒数(0没有倒数);
(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
即:
意图:加深学生对相关概念的理解。
效果:学生在讨论交流中进一步掌握了实数的相反数、倒数、绝对值等知识。
第四环节:实数运算
内容:1.在有理数范围内,能进行哪些运算?(加、减、乘、除、乘方),用哪些运算律?
2.判断下列各式成立吗?
意图:从复习入手,类比有理数中的相关运算及运算律,得到有理数的运算及运算律对实数仍然适用。
效果:学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。
第五环节:课堂练习
内容:1.判断下列说法是否正确:
(1)无限小数都是无理数;
(2)无理数都是无限小数;
(3)带根号的数都是无理数。
2.求下列各数的相反数、倒数和绝对值:
(1); (2); (3).
意图:通过以上练习,检测学生对实数相关知识的掌握情况。
效果:第1,2题学生能较好地完成。
第六环节:归纳小结
内容:议一议,本节课我们学习了哪些知识?
意图:鼓励学生结合本节课的学习谈自己的收获。
效果:学生交流,互相补充,完成本节知识的梳理。
六、反思
实数作为有理数的扩张,其具体研究内容和有理数完全类似,因此学习中,本课时设计中,十分关注前后知识之间的内在联系,关注运用类比的思想学习新的知识,这是本课设计中一个十分显著的特点。实际上,类似的问题在其他知识学习中同样存在,注意体会。
此外,根据学生的认知状况,借助类比学习实数有关知识,还可以有一些不同的尝试,如果学生整体认知水平较高,可以要求学生首先回忆有关有理数学习内容和顺序,并根据这个知识框架思考是否可以构建实数的有关顺序,思考在各个具体内容如何研究等问题,然后再打开书本比照学习。当然也可以首先提出一些思考的问题,让学生自学,整理有关框架,并和旧的框架建立联系等。教无定法,关键在于适应你的学生状况。
附:板书设计
实数与数轴的关系及其运算
教学目标:
1、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
重点、难点:
重点:明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
教学过程:
一、探索用数轴上的点来表示无理数
1、复习勾股定理。如图在Rt△ABC中AB= a,BC = b,AC = c,其中a、b、c满足什么条件。
当a=1,b=1时,c的值是多少?
2、出示投影(1)P45页图2—4,让学生探讨以下问题:
(A)如图OA=OB,数轴上A点对应的数是多少?
(B)如果将所有有理数都标到数轴上,那么数轴上被填满了吗?
3、如图所示,认真观察,探讨下列问题:
议一议:
(1)如图,OA=OB,数轴上A点对应的数表示什么?它介于哪两个整数之间?
(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?
知识整理
(1)每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的;
(2)在数轴上,右边的点表示的数总比左边的点表示的数大。
意图:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。
效果:经过学生的探讨,认识到了数轴上点A表示的数是,它是一个无理数,这表明有理数不能将整个数轴填满。进而观察到点A在表示数1和2的点之间,因此“数轴上,右边的点表示的数总比左边的点表示的数大”在实数范围内仍然适用。
二、随堂练习
1、在数轴上作出对应的点。
意图:通过以上练习,检测学生对实数相关知识的掌握情况。
效果:通过回顾的作法,学生相互讨论、交流,确定了作长、宽分别为2和1的长方形,其对角线为即为,从而能在数轴上作出相应的点。
三、小结
1、数轴上的点和实数一一对应。
四、作业
课本P40习题3
板书设计:略
教学反思:本节内容并不复杂,大部分同学都能很好的掌握。很大部分是借助新知识回顾旧内容。
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!

有理数集合

无理数集合

正数集合

负数集合
6.实数(一)
一、实数定义
二、实数分类:或
三、实数的相关概念与运算:
相反数 倒数 绝对值 运算
A
C
B
1
0
1
2
-1
-2
A
B
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)