北师大版(新)九上-2.2 用配方法求解一元二次方程【优质教案】

文档属性

名称 北师大版(新)九上-2.2 用配方法求解一元二次方程【优质教案】
格式 doc
文件大小 163.0KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-08-10 15:52:49

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
2.2 用配方法求解一元二次方程
直接开平方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
知识与技能
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
过程与方法
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
情感态度与价值观
历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.
重、难点
1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x2-8x+______=(x-______)2;
(2)9x2+12x+_____=(3x+_____)2;
(3)x2+px+_____=(x+______)2.
问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?
老师点评:
问题1:根据完全平方公式可得:(1)16 4;(2)4 2;
(3)()2.
问题2:设x秒后△PBQ的面积等于8cm2
则PB=x,BQ=2x
依题意,得:x·2x=8
x2=8
根据平方根的意义,得x=±2
即x1=2,x2=-2
可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值.
所以2秒后△PBQ的面积等于8cm2.
二、探索新知
上面我们已经讲了x2=8,根据平方根的意义,直接开平方得
x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,
那么2t+1=±2
即2t+1=2,2t+1=-2
方程的两根为t1=-,t2=--
例1:解方程:x2+4x+4=1
分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x1=-1,x2=-3
例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是
10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材P6练习.
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.
解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)当成一个数,配方得:
(1+x+)2=2.56,即(x+)2=2.56
x+=±1.6,即x+=1.6,x+=-1.6
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握:
由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.
六、布置作业
1.教材P16复习巩固1.
2.选用作业设计:
配方法
教学内容
间接即通过变形运用开平方法降次解方程.
教学目标
知识与技能
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
过程与方法
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.
重难点
1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
教学过程
一、复习引入
(学生活动)请同学们解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2
二、探索新知
列出下面二个问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面三个方程的解法呢?
问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.
大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?
问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?
老师点评:问题1:设总共有x只猴子,根据题意,得:
x=(x)2+12
整理得:x2-64x+768=0
问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500
整理,得:x2-36x+70=0
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2-64x+768=0 移项→ x=2-64x=-768
两边加()2使左边配成x2+2bx+b2的形式 → x2-64x+322=-768+1024
左边写成平方形式→(x-32)2=256 降次→x-32=±16 即 x-32=16或x-32=-16
解一次方程→x1=48,x2=16
可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子.
学生活动:
例1.按以上的方程完成x2-36x+70=0的解题.
老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=±,x-18=或x-18=-,x1≈34,x2≈2.
可以验证x1≈34,x2≈2都是原方程的根,但x≈34不合题意,所以道路的宽应为2.
例2.解下列关于x的方程
(1)x2+2x-35=0 (2)2x2-4x-1=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=±6
x-1=6,x-1=-6
x1=7,x2=-5
可以,验证x1=7,x2=-5都是x2+2x-35=0的两根.
(2)x2-2x-=0 x2-2x=
x2-2x+12=+1 (x-1)2=
x-1=±即x-1=,x-1=-
x1=1+,x2=1-
可以验证:x1=1+,x2=1-都是方程的根.
三、巩固练习
教材P6探究改为课堂练习,并说明理由.
教材P39练习1 、2.(1)、(2).
四、应用拓展
例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.
分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式.
解:设x秒后△PCQ的面积为Rt△ACB面积的一半.
根据题意,得:(8-x)(6-x)=××8×6
整理,得:x2-14x+24=0
(x-7)2=25即x1=12,x2=2
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
所以2秒后△PCQ的面积为Rt△ACB面积的一半.
五、归纳小结
本节课应掌握:
左边不含有x的完全平方形式,左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
六、布置作业
1.教材P17复习巩固2.
2.选用作业设计.
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)