班海数学精批——一本可精细批改的教辅
25.2 用列举法求概率
第1课时 用列表法求概率
【知识与技能】
初步掌握直接列举法计算一些简单事件的概率的方法.
【过程与方法】
通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.
【情感态度】
体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.
【教学重点】
熟练掌握直接列举法计算简单事件的概率.
正确理解和区分一次试验中包含两步或两个因素的试验.
【教学难点】
能不重不漏而又简洁地列出所有可能的结果.
一、情境导入,初步认识
1.复习回顾①概率的意义;②对于试验结果是有限等可能的事件的概率的求法.
2.多媒体展示扫雷游戏,引入课题.
二、典例精析,掌握新知
我们在日常生活中,常常会用掷硬币的方式来决定游戏的胜负,下列请同学们思考下面的这种游戏规则是否公平.
例 老师向空中抛掷两枚同样的硬币,如果落地后一反一正,老师赢;如果落地后都只正面时,同学们赢,请问你们觉得这个游戏公平吗?
【教学说明】对“游戏是否公平”实际是看两方出现的概率大小如何.所以解决本题的关键是,分别计算出“一正一反”与“都是正面”的概率各是多少并比较,这里教师要引导学生条理清楚地列举出所有可能的结果,学生思考交流.
解:我们利用表格的形式,列举出所有可能的结果.
∴这游戏不公平.
问:“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验的所有可能一样吗?
答案:一样.
三、运用新知,深化理解
1.在“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:20个商标牌中,有5个商标牌背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻,有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )
2.从甲、乙、丙三人中任意选两名代表参加会议,甲被选中的概率为( )
3.在一个布袋里装有红、白、黑三种颜色的玻璃球各一个,它们除颜色外,没有其他区别,先从布袋中取出一个球,放回袋中并搅匀,再从袋中取一个球,则两次取出的恰好都是红球的概率是_____.
4.袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率;
(1)第一次摸到红球,第二次摸到绿球;
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球.
5.在“妙手推推推”的游戏中,主持人出示了一个9位数:258396417,让参与者猜商品价格,被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品的概率.
【教学说明】本练习着重演练用列举法求简单事件的概率,可先让学生自主完成,再选派几名学生作答,教师再予以评点.
【答案】1.B【解析】所有剩下的商标共20-2=18个,其中有奖的有5-1=4个,所以它第三次翻牌获奖的概率为4/18=2/9.
2.C【解析】分析所有的可能结果为(甲、乙),(甲,丙),(乙,甲),(乙,丙),(丙,甲),(丙,乙).事件A包含的结果为(甲、乙),(甲,丙),(乙,甲),(丙,甲)共4个,故P(A)=4/6=2/3.
3.1/9【解析】所有可能出现的结果有(红,红)、(红,白)、(红,黑)、(白,红)、(白,白)、(白,黑)、(黑,红)、(黑,白)、(黑,黑)共有9种,所以P(都是红球)=1/9.
4.(1)1/4(2)1/2(3)1/2
5.所有可能结果有:2583,5839,8396,3964,9641,6417,其中只有一种是该商品的价格,所以猜中该商品的概率为1/6.
四、师生互动,课堂小结
1.本堂课你学到了什么知识,有哪些收获?
2.你能不重不漏地列举出事件发生的所有可能吗?
3.你能正确求出P(A)=m/n吗?
【教学说明】围绕上述问题,教师引导学生交流归纳.用列举法求简单事件概率的一般步骤,重点是要让学生掌握方法.
1.布置作业:从教材“习题25.2”中选取.
2.完成创优作业中本课时练习的“课时作业”部分.
1.本节课通过以学生喜闻乐见的扫雷、掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.
2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.
3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.
第2课时 用树形图求概率
学习目标:
会用树形图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.
正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.
重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树形图法计算简单事件发生的概率,并阐明理由.
难点:用树形图求出一次试验所有可能的结果.
复习引入:
当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.
当一次试验中涉及3个因素或更多的因素时,怎么办 引入课题
课前预习导学:
学习P137-138内容,体会用“树形图”的方法求概率。
自我检测:
抛掷一枚质地均匀的骰子,计算下列事件的概率:
(1)点数为6; (2)点数小于或等于3; (3)点数为7.
研讨一:
同时抛掷三枚硬币,求下列事件的概率:
(1) 三枚硬币全部正面朝上;
(2) 两枚硬币正面朝上而一枚硬币反面朝上;
(3) 至少有两枚硬币正面朝上.
学习小组交流,讨论并让学生板演
解: 由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.
满足三枚硬币全部正面朝上(记为事件A)的结果只有1种
∴ P(A)=
满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种
∴ P(B)=
(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种
∴ P(C)==
课内训练巩固:
在小组交流探讨的基础上小结:
用树状图和列表法求概率的前提是:各种结果出现的可能性必须相等
研讨二:
甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是多少?
本题中元音字母: A E I
辅音字母: B C D H
师生分析:
第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?
第二、画出树形图:学生试画后,教师板书.
解:根据题意,我们可以画出如下“树形图”:
(
甲
乙
丙
A
C
H
I
D
H
I
E
H
I
B
C
H
I
D
H
I
E
H
I
)
第三、计算概率:明确随机事件,正确数出的值,计算概率.
师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中的值.学生讨论后归纳出正确数出的方法:
方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出的值.
方法2:直接看树形图的最后一步,就可以求出的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出的值了.
教师板书:
由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.
(1)只有一个元音字母的结果有5个,所以;
有两个元音字母的结果有4个,所以;
全部为元音字母的结果有1个,所以;
(2)全是辅音字母的结果有2个,所以.
第四、归纳方法:画树形图求概率的基本步骤:
(1)明确一次试验的几个步骤及顺序;
(2)画树形图列举一次试验的所有可能结果;
(3)明确随机事件,数出;
(4)计算随机事件的概率.
想一想:
(1) 列表法和树形图法的优点是什么
(2)什么时候使用“列表法”方便 什么时候使用“树形图法”方便
课内训练巩固:
1. 小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。
2、在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?
(1)、从盒子中取出一个小球,小球是红球;
(2)、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;
(3)、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同。
课外拓展:
经过某十字路口的汽车,它可能继续直行,也可能左转的概率:
(1)三辆车全部继续直行;
(2)两辆车右转,一辆车左转;
(3)至少有两辆车左转。
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!