冀教版(新)九上-26.4 解直角三角形的应用【优质教案】

文档属性

名称 冀教版(新)九上-26.4 解直角三角形的应用【优质教案】
格式 doc
文件大小 113.0KB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-08-10 15:53:57

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
26.4 解直角三角形的应用
第一课时
一、教学目标
(一)、知识与技能
使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.
(二)、过程与方法
逐步培养分析问题、解决问题的能力.
(三)、情感态度与价值观
培养学生用数学的意识,渗透理论联系实际的观点.
二、重、难点
重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
三、教学过程
(一)明确目标
1.解直角三角形指什么?
2.解直角三角形主要依据什么?
(1)勾股定理:a2+b2=c2
(2)锐角之间的关系:∠A+∠B=90°
(3)边角之间的关系:
tanA=, cotA=
(二)整体感知
在讲完查“正弦和余弦表”以及“正切和余切表”后,教材随学随用,先解决了本章引例中的实际问题,然后又解决了一些简单问题,至于本节“解直角三角形”,完全是讲知识的应用与联系实际的.因此本章应努力贯彻理论联系实际的原则.
(三)重点、难点的学习与目标完成过程
1.仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.
教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.
2.例1 如图(6-16),某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=16°31′,求飞机A到控制点B距离(精确到1米).
解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt△ABC中的∠ABC,进而利用解直角三角形的知识就可以解此题了.
解;在Rt△ABC中sinB=
AB==4221(米)
答:飞机A到控制点B的距离约为4221米.
例1小结:本章引言中的例子和例1正好属于应用同一关系式 sinA=
来解决的两个实际问题即已知和斜边
求∠α的对边;以及已知∠α和对边,求斜边.
3.巩固练习
如图6-17,某海岛上的观察所A发现海上某船只B并测得其俯角α=80°14′.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)
为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.
由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化为数学问题,因此教师在学生充分地思考后,应引导学生分析:
1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.
2.请学生结合图(6-18)说出已知条件和所求各是什么?
答:已知∠B=8°14′,AC=43.74-2.63=41.11,求AB.
这样,学生运用已有的解直角三角形的知识完全可以解答.
对于程度较高的学生,教师还可以将此题变式:当船继续行驶到D时,测得俯角β=18°13′,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.
例2 如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.
此题在例1的基础上,又加深了一步,须由A作一条平行于CD的直线交BD于E,构造出Rt△ABE,然后进一步求出AE、BE,进而求出BD与CD.
设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.
解:过A作AE∥CD,于是AC=ED,
AE=CD.
在Rt△ABE中。sinA=
∴BE=AB·sinA=160·sin11°=30.53(米).
cosA=
∴AE=AB·cosA=160·cos11°=157.1(米).
∴BD=BE+ED=BE+AC=30.53+1.5=32.03(米).
CD=AE=157.1(米).
答:BD的高及水平距离CD分别是32.03米,157.1米.
练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度为1.72米,求树高(精确到0.01米).
要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.
(四)总结与扩展
请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.
四、布置作业
1.课本习题
第二课时
一、 教学目标
(一)知识与技能
巩固直角三角形中锐角的三角函数,学会解关于方位角的问题.
(二)过程与方法
逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法.
(三)情感态度与价值观
培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点.
二、重、难点
重点:能熟练运用有关三角函数知识.
难点:解决实际问题.
三、教学过程
(一)明确目标
讲评上课节课后作业
(二)重点、难点的学习与目标完成过程
教师出示例题.
例1 如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).
分析:1.例题中出现许多术语——株距,倾斜角,这些概念学生未接触过,比较生疏,而株距概念又是学生易记错之处,因此教师最好准备教具:用木板钉成一斜坡,再在斜坡上钉几个铁钉,利用这种直观教具更容易说明术语,符合学生的思维特点.
2.引导学生将实际问题转化为数学问题画出图形(上图 (2)).已知:Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.
3.学生运用解直角三角形知识完全可以独立解决例1.教师可请一名同学上黑板做,其余同学在练习本上做,教师巡视.
答:斜坡上相邻两树间的坡面距离约是6.0米.
教师引导学生评价黑板上的解题过程,做到全体学生都掌握.

例2 如图6-30,沿AC方向开山修渠,为了加快施工速度,要从小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=52cm,∠D=50°,那么开挖点E离D多远(精确到0.1m),正好能使A、C、E成一条直线?

这是实际施工中经常遇到的问题.应首先引导学生将实际问题转化为数学问题.
由题目的已知条件,∠D=50°,∠ABD=140°,BD=520米,求DE为多少时,A、C、E在一条直线上。
学生观察图形,不难发现,∠E=90°,这样此题就转化为解直角三角形的问题了,全班学生应该能独立准确地完成.
解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角.
∴∠BED=∠ABD-∠D=90°.
∴DE=BD·cosD=520×0.6428=334.256≈334.3(m).
答:开挖点E离D334.3米,正好能使A、C、E成一直线,

提到角度问题,初一教材曾提到过方位角,但应用较少.因此本节课很有必要补充一道涉及方位角的实际应用问题.

补充题:正午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).

学生虽然在初一接触过方位角,但应用很少,所以学生在解决这个问题时,可能出现不会画图,无法将实际问题转化为几何问题的情况.因此教师在学生独自尝试之后应加以引导:
(1)确定小岛O点;(2)画出10时船的位置A;(3)小船在A点向南偏东60°航行,到达O的正东方向位置在哪?设为B;(4)结合图形引导学生加以分析,可以解决这一问题.
解:由图6-31可知,∠AOB=60°,∠OAB=90°.
∴AB=OAtan60°
从点A行到B点所需时间为 ≈17.32(海里).
答:船到达点B的时间为1小时44分.

此题的解答过程非常简单,对于程度较好的班级可以口答,以节省时间补充一道有关方向角的应用问题,达到熟练程度.对于程度一般的班级可以不必再补充,只需理解前三例即可.
补充题:如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?

如果时间允许,教师可组织学生探讨此题,以加深对方位角的运用.同时,学生对这种问题也非常感兴趣,教师可通过此题创设良好的课堂气氛,激发学生的学习兴趣.
若时间不够,此题可作为思考题请学生课后思考.
(三)小结与扩展
教师请学生总结:在这类实际应用题中,都是直接或间接地把问题放在直角三角形中,虽然有一些专业术语,但要明确各术语指的什么元素,要善于发现直角三角形,用三角函数等知识解决问题.

四、布置作业
第三课时
1.理解并掌握坡度、坡比的定义;
2.学会用坡度、坡比解决实际问题.(重点、难点)
一、情境导入
在现实生活中,测量某些量可以采取不同的方法,某斜面的截面如图所示,两位同学分别选取不同的点进行测量.从F处进行测量和从A处进行测量的数据如图所示.
你能否通过所学知识求得该坡面的铅直高度?
二、合作探究
探究点:与坡度或坡角有关的实际问题
一辆汽车从坡底走到坡顶共用30s,车速是2m/s,汽车行驶的水平距离是40m,则这个斜坡的坡度是________.
解析:坡面距离为30×2=60m,水平距离为40m,∴铅直高度为602-402=205(m),∴坡度i=205∶40=5∶2.
方法总结:根据坡度的定义i=hl,解题时需先求得水平距离l和铅直高度h.
如图所示,在平面上种植树木时,要求株距(相邻两树间的水平距离)为4,如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为( )
A.5m
B.6m
C.7m
D.8m
解析:由题知,水平距离l=4,i=0.75,∴铅直高度h=l·i=4×0.75=3(m),∴坡面距离为32+42=5(m).故选A
方法总结:解此类题,首先根据坡度的定义,求得水平距离或铅直高度,再根据勾股定理,求得坡面距离.
如图所示,给高为3米,坡度为1∶1.5的楼梯表面铺地毯.已知每级楼梯长度为1.5米,地毯的价格为每平方米8元,则铺完整个楼梯共需多少元?
解析:由于楼梯的长度已知,所以要求地毯的总面积,需求地毯的总长度,由题意知,地毯的总长度为BC与AC的和,而由坡度的定义知BCAC=11.5,所以AC可求.
解:∵BCAC=11.5,∴AC=1.5BC=1.5×3=4.5(米).
∴AC+BC=4.5+3=7.5(米).
∴地毯的总面积为1.5×7.5=11.25(平方米).
∴需要的钱数为8×11.25=90(元).
答:铺完整个楼梯共需90元.
三、板书设计
坡度(坡比)的问题:
坡面的铅直高度h和水平宽度l的比叫坡度(或坡比),即i=tanα,坡面与水平面的夹角α叫坡角.
本课时主要培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.进一步感知坡度、坡角与实际生活的密切联系,认识将知识应用于实践的意义.
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)