冀教版(新)九上-28.3 圆心角与圆周角【优质教案】

文档属性

名称 冀教版(新)九上-28.3 圆心角与圆周角【优质教案】
格式 doc
文件大小 494.5KB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-08-10 15:53:57

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
28.3 圆心角与圆周角
圆心角、弦、弧的关系
教学目标:
1.让学生在实际操作中发现圆的旋转不变性。
2.结合图形让学生了解圆心角的概念,学会辨别圆心角。
3.引导学生发现圆心角、弦、弧之间的相等关系,并初步学会运用这些关系解决有关问题。
4.培养学生观察、分析、归纳的能力,渗透旋转变换的思想及由特殊到一般的认识规律。
教学重点:圆心角、弦、弧、弦心距之间的相等关系。
教学难点:从圆的旋转不变性出发,得到圆心角、弦、弧、弦心距之间的相等关系。
教学程序:
一、创设情境
动手操作
(1)平行四边形绕对角线交点O旋转180°后,你发现了什么?
(2)⊙O绕圆心O旋转180°后,你发现了什么?
(3)思考:平行四边形绕对角线交点O任意旋转任意一个角度后,你发现了什么?把⊙O绕圆心O旋转任意一个角度后,你发现了什么?
设计意图:学生在操作中发现平行四边形和圆旋转180°后都能与自身重合,所以是中心对称图形。但是平行四边形旋转任意角度后并不总能与自身重合,而圆旋转任意角度后总能与自身重合,从中引导学生发现圆的旋转不变性
二、探究新知
(1)探究:我们把顶点在圆心的角叫做圆心角。将圆心角∠AOB绕圆心O旋转到∠A‘OB’的位置,你能发现哪些等量关系?为什么?
得出:当∠AOB =∠A’OB’时,有:弦AB=弦A’B’,弧AB=弧A’B’。
(2)在等圆中,是否也能得出类似的结论呢?
做一做:在纸上画两个等圆,画∠A’OB=∠AOB,连结AB和A’B’,则弦AB与弦A’B’,弧AB与弧A’B’还相等吗?为什么?
请学生动手操作,在实践中发现结论依旧成立。
设计意图:学生在操作中,由圆的旋转不变性可得到圆心角,弧,弦弦心距之间的关系定理。
(3)说一说
尝试将上述结论用数学语言表达出来。在学生回答的基础上,师生共同得出:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦,所对的弦心距也相等。
(4)思考:在同圆或等圆中,如果两条弧相等,你能得到什么结论?在同圆或等圆中,如果两条弦相等呢?在同圆或等圆中,如果两条弦心距相等呢?
学生小组讨论,归纳得出:
在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对应的其余各组量也相等。
(5)想一想:假设把刚才两者之间的关系的前提“在同圆或等圆中”条件去掉,他们之间的关系还成立吗?举出反例。
设计意图:通过学生思考,归纳进一步理解圆心角、弧、弦、弦心距之间的关系。体会到定理的严密性。
三、例题教学:
例1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.
(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么弧AB与弧CD的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?
分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.
(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,
又有AO=CO是半径,∴Rt△AOE≌Rt△COF,
∴AE=CF,∴AB=CD,又可运用上面的定理得到弧AB=弧CD
设计意图:本活动的设计是今天所学的定理的应用。通过引导学生对定理的理解和应用,进一步归纳出相等的量中还包括弦心距这一组量。
四、练习
1.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.
2.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________
3.如图,以 ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,求BE的度数和BF的度数.

五、小结
在同圆或等圆中,圆心角、弧、弦、弦心距之间存在什么关系?
六、作业。
圆周角和圆心角,弧的关系
教学目标
(一)知识与技能
1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
2、准确地运用圆周角定理及其推论进行简单的证明计算。
(二)过程与方法
1、通过观察、比较、分析圆周角与圆心角的关系发展学生合情推理和演绎推理的能力。
2、通过观察图形,提高学生的识图的能力
3、通过引导学生添加合理的辅助线,培养学生探究问题的兴趣。
(三)情感与价值观
1、经过探索圆周角定理的过程,发展学生的数学思考能力。
2、通过积极引导,帮助学生有意识主动探究,并能在探究中获得成功的体验。
教学重点
圆周角定理、圆周角定理的推导及运用它们解题.
教学难点
1. 认识圆周角定理需要分三种情况逐一证明的必要性。
2. 推论的灵活应用以及辅助线的添加
教学突破
让学生学会分类讨论、转换化归是教学突破的关键
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容,制作圆形纸片
教学过程
活动1: 创设情景,引入概念
师:课件(出示圆柱形海洋馆图片)
右图是圆柱形海洋馆的俯视图.海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物.
如图是圆柱形的海洋馆横截面的示意图, 表示圆弧形玻璃窗.同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E,
师:同学甲的视角∠AOB的顶点在圆心处,我们称这样的角为圆心角.同学乙的视角∠ACB、同学丙的视角∠ADB和同学丁的视角∠AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角.
师:提出问题
问题1:观察∠ACB、∠ADB和∠AEB的边和顶点与圆的位置有什么共同特点?
问题2:∠ACB、∠ADB和∠AEB与∠AOB有什么区别?
问题3:∠ACB、∠ADB和∠AEB有哪些共同点?
(教师引导学生进行探究,并关注以下问题)
1、 问题的出示是否引起学生的兴趣
2、 学生是否理解示意图
3、 学生是否理解圆周角的定义
4、 学生是否清楚了要探究的数学问题
生:这三个角的共同点有两个:①顶点都在圆周上;②两边都与圆相交.
师:评价并鼓励学生的总结给出肯定,我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角.
(教师板书圆周角定义,并强调定义的两个要点,学生在学案上写出圆周角的定义.)
设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质.
跟踪练习:请同学们根据定义回答下面问题:在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?
(学生思考片刻之后,教师就每个图形分别请一位学生作答.)
设计意图:为了使学生更加容易地掌握概念,此处教师并排地呈现正例和反例,可以有利于学生对本质属性与非本质进行比较.
活动2:问题探究
探究同弧所对圆周角及圆周角与圆心角的关系
师:下面我们继续研究海洋馆的问题,设想你是一名游客,甲、乙、丙、丁四位同学的位置供你选择,你认为在哪个位置看到的海洋景象范围更广一些?
预设生:(会很肯定的说)当然是同学甲的位置可以看到更广的海洋范围了.
师提出:你是如何知道的?
预设生1:因为我发现∠AOB比∠ACB、∠ADB和∠AEB都大.
预设生2:因为发现在圆内当角的顶点距离弧越近角就越大
师提出:如果在乙、丙、丁三位同学的位置中选择,哪个位置看到的海洋范围更广一些?
预设生:(看了图形想了想)三个位置看到海洋范围的大小应该是一样的.
师提出问题:1、弧AB所对的圆周角的个数有多少个?
2、弧AB所对的圆周角的度数是否发生变化?
预设生:有无数个,度数相等
师:你是怎么知道的?
预设生:观察猜到的。
师:学习数学需要有观察、猜想但更重要的还要验证。请同学们验证你们的说法,并与同伴交流.
师提出问题:弧AB所对的圆周角与其所对的圆心角有什么关系?
(学生分组开始动手操作验证:有的借助量角器,用度量的方法进行验证;有的采用折叠重合的方法进行验证……)
预设生:(兴奋地惊叫着……)老师,我发现了:同学乙、丙、丁的视角∠ACB、∠ADB和∠AEB相等,同学甲的视角∠AOB比其他同学的视角都大,是它们的2倍!
(其他同学也都兴奋得不得了,教室里顿时一片欢腾)
设计意图:引导学生经历观察、猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质,感知基本几何事实,初步体会两种数量关系:①同弧所对的圆周角和圆心角的关系;②同弧所对的圆周角的关系.
师:下面,老师用计算机进一步验证我们刚才所得到的结论:
(教师开始在计算机上进行验证.)
首先采用《几何画板》的度量功能,量出∠AOB、∠ACB、∠ADB和∠AEB,发现:∠AOB最大,∠ACB=∠ADB=∠AEB,接着,采用计算功能,计算∠ACB和∠AOB的比值,发现:∠ACB:∠AOB=1:2.
然后教师分别从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:①拖动圆周角的顶点使其在圆周上运动;②改变圆心角的度数;③改变圆的半径大小.
设计意图:通过《几何画板》做进一步演示与验证,用几何动态的语言来研究圆周角与圆心角的关系,在某些量变化的过程中让学生观察不变的数量关系,帮助学生更好地理解圆周角与圆心角的关系.
师:既然这样,我们请一位同学把所发现的结论用文字语言表述一下.
预设生1:同弧所对的圆周角相等,并且都等于圆心角的一半.
预设生2:他的说法不准确,应该是:在同圆或等圆中,同弧所对的圆周角相等,并且都等于这条弧所对的圆心角的一半.丢掉了“在同圆或等圆中”和“这条弧所对的”这两点.
师:前一位同学总结得很好,但后一位同学总结得更准确,我们要学习他们这种严谨治学的态度和精神.
设计意图:把直观操作与逻辑推理有机结合,使将要进行的推理论证成为学生观察、实验、探究得出结论的自然延续.
活动3:用分类讨论的方法证明定理
师: 为了更好地说明结论的正确性,下面我们探究其论证方法.先请同学们在右图的⊙O中尽可能多地画所对的圆周角,并思考圆心与圆周角有哪几种位置关系
(学生分组画图,每个小组总结所画的图形的情况,教师巡视,在同学们所画的图形中发现圆心与圆周角的三种位置关系的例子,并在展示台上演示.)
预设生1:圆心在圆周角的一边上
预设生2,圆心在圆周角的内部,
预设生3在圆周角的外部.
师:圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)
师:在上述三种情况中我们先选择其中的一种情况进行证明,选哪种情况,如何证明
(学生先独立思考, 然后在同伴间悄悄交流自己的思路.)
预设生:选择第一种情况进行证明,因为圆心在圆周角的一边上,是最简单的一种情况.因为圆心在圆周角的一边上,所以AC是圆的直径,由同圆半径相等可知,OC=OB,所以∠C=∠B,根据定理“三角形的外角等于和它不相邻的两个内角的和”可得,∠AOB=∠C+∠B=2∠C,即同弧所对的圆周角等于这条弧所对的圆心角的一半.
师:证明得非常好,掌声给予鼓励!
师:当圆心在圆周角的一边上的时候,圆周角∠ACB的边AC部分就是⊙O的直径,因此给证明思路的寻找带来了不少方便,当圆心不在圆周角的边上时,比如在角的内部,沿CO对折⊙O,展开后你有什么发现?对该情况下命题的证明有哪些启示?
(学生开始对折圆形纸片,观察,分析,交流……)
预设生:由对折发现,可以转化为第一种情况的证明,即,如果做过点C的直径CD,那么,由(1)中的结论可知:
∠ACD=∠AOD,∠BCD=∠BOD,两式相加即可得到∠ACB=∠AOB.
师:很好!请同学们在学案上写出这种情况下的证明过程,之后完成最后一种情况的证明,同伴之间交流自己的证明思路.
(各小组学生思考交流后一种情况的证明思路,完成证明过程.一名学生黑板上展示证明过程,教师做思路和规范性点评.)
设计意图:在本段的教学中,注意突出图形性质的探究过程,重视学生主体地位的落实,通过观察度量、实验操作、图形变换、合情推理来探索图形的性质,从而让学生学会分析问题和解决问题的方法.另外,教学时尽可能地从数学语言的三种形态“文字语言、图形语言、符号语言”进行描述,以强化对数学知识的学习与理解,加强数学语言的运用与表达.
师:通过上面的证明,我们得到:同弧所对的圆周角等于这条弧所对的圆心角的一半.其实,等弧的情况下该命题也是成立的,命题“同弧或等弧所对的圆周角相等”也是正确的,想一想为什么?
(教师板书)
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
活动4:巩固练习,拓展性质
1、如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4各内角分成8个角,这些角中哪些是相等的角?
2、如图,点A、B、C、D在⊙O上,若∠C=60°,则∠D=____,∠O=____.
3、如图,等边△ABC的顶点都在⊙O上,点D是⊙O上一点,则∠BDC=____.
(学生独立思考,交流,回答问题,教师通过学生练习,及时发现问题,评价教学效果.)
设计意图:习题的作用是将基本知识技能化,通过技能的训练帮助学生理解基本知识.比如在第3题中,学生要求∠BDC,首先要根据定义判断这个角是圆中的什么角?要求它的值应该建立与哪个量的关系?(弧)借助于这个量又可以与谁相联系?(∠A)通过这样的转化考察了学生对定理的理解和应用,并使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力.
圆周角和直径的关系
学习目标
1.经历探索圆周角的有关性质的过程
2.知道圆周角定义,掌握圆周角定理,会用定理进行推证和计算。
3.体会分类、转化等数学思想.
学习重点:圆周角的性质及应用.
学习难点:圆周角的性质及应用.
教学过程
一、 情境创设
问题情境:我们学过哪些与圆有关的角?它们之间有什么关系?
二、 探究学习
1. 尝试、交流
(1)BC是☉O的直径,它所对的圆周角是锐角、还是钝角、还是直角?为么?
(2)圆周角∠BAC=900,弦BC过圆心吗?为什么?
  
2. 总结
直径所对的圆周角是直角,90度的圆周角所对的弦是直径 。
3. 典型例题
 例1.AB是☉O直径,弦CD与AB相交于点E,∠ACD=60度,∠ADC=50度,
求∠CEB的度数.
例2.如图AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠ADC=50°,求∠CEB的度数.
例3.在ΔABC的3个顶点都在☉O上,AD是ΔABC的高,AE是☉O的直径,求证:ΔABE∽ΔACD。
三、 归纳总结
1. 探索了圆周角的有关性质
2.圆周角定义、圆周角定理,会用定理进行推证和计算。
3.体会分类、转化等数学思想.
圆内接四边形
1. 知识结构
2. 重点、难点分析
重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的外角和它的内对角的相互对应位置.
3. 教法建议
本节内容需要一个课时.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标 :
(一)知识目标
(1)了解圆内接多边形和多边形外接圆的概念;
(2)掌握圆内接四边形的概念及其性质定理;
(3)熟练运用圆内接四边形的性质进行计算和证明.
(二)能力目标
(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
(2)通过定理的证明探讨过程,促进学生的发散思维;
(3)通过定理的应用,进一步提高学生的应用能力和思维能力.
(三)情感目标
(1)充分发挥学生的主体作用,激发学生的探究的热情;
(2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
二、教学重点和难点:
重点:圆内接四边形的性质定理.
难点:定理的灵活运用.
三、教学过程 设计
(一)基本概念
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等,有一组对边平行.
归纳:圆内接四边形的边之间看不出存在什么公同的性质.
2、角的关系
猜想:圆内接四边形的对角互补.
(三)证明猜想
教师引导学生证明.(参看思路)
思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢
∠A=,∠C=
∴∠A+∠C=
思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢
这时有2(α+β+γ+δ)=360°
所以 α+β+γ+δ=180°
而 β+γ=∠A,α+δ=∠C,
∴∠A+∠C=180°,可得,圆内接四边形的对角互补.
(四)性质及应用
定理:圆内接四边形的对角互补,并且任意一个外角等于它的内对角.
(对A层学生应知,逆定理成立, 4点共圆)
例 已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F.
求证:CE∥DF.
(分析与证明学生自主完成)
说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.
(五)小结
知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.
思想方法:①“特殊——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.
(六)作业
探究活动
问题: 已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙A上(不与B、C重合)一点,直线BD与⊙O相交于点E.试问:当点D在⊙A上运动时,能否判定△CED的形状?说明理由.
分析 要判定△CED的形状,当运动到BD经过⊙A的圆心A时,此时点E与点A重合,可以发现△CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠D及∠CED的大小保持不变,△CED的形状保持不变.
提示:分两种情况
(1)当点D在⊙O外时.证明△CDE∽△CAD’即可
(2)当点D在⊙O内时. 利用圆内接四边形外角等于内对角可证明△CDE∽△CAD’即可
说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换;
(2)本题为图形形状判定型的探索题,结论的探索同样运用图形运动思想,证明结论将一般位置转化成特殊位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法;
(3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证明方法不同时,也要进行分类讨论.本题中,如果将直线BD运动到使点E在BD的反向延长线上时,
△CDE仍然是等腰三角形.
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
第一种情况
第二种情况
第三种情况
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)