1.2.2 数轴
教学目标
1.知识与技能
①掌握数轴三要素,能正确画出数轴.
②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
2.过程与方法
①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
②结合本节内容,对学生渗透数形结合的重要思想方法.
3.情感、态度与价值观
使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
教学重点难点
重点:数轴的概念.
难点:从直观认识到理性认识,从而建立数轴概念.
教与学互动设计
(一)创设情境,导入新课
课件展示 在一条东西方向的马路上,有一个学校,学校东50m和西150m处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容──数轴.
点拨 (1)引导学生学会画数轴.
第一步:画直线定原点
第二步:规定从原点向右的方向为正(左边为负方向)
第三步:选择适当的长度为单位长度(据情况而定)
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-,0吗?
讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?与原点又相距了多少个长度单位?
小结 整数能在数轴上都找到点吗?分数呢?
可见,所有的__________都可以用数轴上的点表示___________都在原点的左边,______________都在原点的右边.
(三)应用迁移,巩固提高
例1 下列所画数轴对不对?如果不对,指出错在哪里.
【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错
例2 试一试:用你画的数轴上的点表示4,1.5,-3,-,0
【答案】
图中A点表示4,B点表示1.5,C点表示-3,D点表示-,E点表示0.
例3 如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?表示-a的点在原点的什么位置上呢?
【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.
【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.
【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.
例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)
A.1个 B.2个 C.3个 D.4个
【提示】 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.
例5 (1)与原点的距离为2.5个单位的点有 两 个,它们分别表示有理数 2.5 和 -2.5 .
(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7个单位到达终点,那么终点表示的数是 +3 .
例6 在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.
【答案】 -2,-1,0,1
【点评】 本题反映了数形结合的思想方法.
例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)
A.1998或1999 B.1999或2000
C.2000或2001 D.2001或2002
【提示】分两种情况分析:(1)当线段AB的起点是整点时,终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,终点也不落在整点上,那么线段AB盖住了2000个整点.
【点评】 本题体现了新课程标准的探索和实践能力.
备选例题
(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.
【点拨】 不要忽视在原点的左右两边.
【答案】 ±3
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
一条直线的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图:
(1)点M4和M2所表示的有理数是什么?
(2)点M3和M5两点间的距离为多少?
(3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明;
(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?
【答案】 (1)M4表示2,M2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度.
(五)课堂跟踪反馈
夯实基础
1.规定了 原点 、 正方向 、 单位长度的直线 叫数轴,所有的有理数都可从用 数轴 上的点来表示.
2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .
3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)
A.7 B.-3 C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是(D)
A.正数 B.负数 C.不是负数 D.不是正数
5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别 在原点的两边 .
提升能力
6. 1 是最小的正整数, 0 是最小的非负数, 0 是最大的非正数.
7.与原点距离为3.5个单位长度的点有 2 个,它们分别是 3.5 和 -3.5 .
8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3
【答案】 略
开放探究
9.在数轴上与-1相距3个单位长度的点有 2 个,为 -4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.
10.新中考题
(2004·南京)下列四个数中,在-2到0之间的数是(A)
A.-1 B.1 C.-3 D.3