第二十一章 一元二次方程单元检测试题(含答案)

文档属性

名称 第二十一章 一元二次方程单元检测试题(含答案)
格式 zip
文件大小 244.6KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-08-22 17:48:05

图片预览

文档简介

中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.方程x2+x﹣1=0的一个根是(  )
A.1﹣ B. C.﹣1+ D.
2.一元二次方程x2+2x=0的根是(  )
A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2
3.若方程+3x+5=0是一元二次方程,则m的值等于(  )
A.±1 B.1 C.﹣1 D.0
4、一元二次方程的解的情况是( )
A.无解 B.有两个不相等的实数根
C.有两个相等的实数根 D.只有一个解
5、用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为(  )
A.(x﹣2)2=3 B.2(x﹣2)2=3
C.2(x﹣1)2=1 D.2(x﹣1)2=
6、关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是(  )
A.且 B.
C.且 D.
7、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )
A.10% B.15% C.20% D.25%
8.已知a+,则的值为(  )
A.﹣1 B.1 C.2 D.不能确定
9.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是(  )
A.300(1+x)=507 B.300(1+x)2=507
C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=507
10.如图,要设计一幅宽为20cm,长为30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,那么横彩条和竖彩条的宽度分别是( )
A. 和 B. 和
C. 和 D. 和
二、填空题(每题3分,共24分)
11、方程x2-3=0的根是__________.
12、已知x=1是方程x2-4x+c=0的一个根,则c的值是_________.
13、若关于x的一元二次方程有两个不相等的实数根,则a的取值范围是_____.
14、若m,n是方程x2+x﹣1=0的两个实数根,则mn的值为_____.
15、用配方法解方程,配方后方程可化为________.
16、三角形的每条边的长都是方程的根,则三角形的周长是________.
17、如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为_____.
18、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为________.
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23、如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
24、为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量(台)和销售单价(万元)满足如图所示的一次函数关系.
(1)求月销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?
参考答案与试题解析
选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 D A C A C B B C D A
二.填空题(共8小题)
11、x1=,x2=- .
12、3

-1
6或10或12
11或﹣8
x(x-1)=1640
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.羊圈的边长AB,BC分别是20米、20米.
【详解】
试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.
试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米. 根据题意得 (100﹣4x)x=400,
解得 x1=20,x2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x2=5舍去. 即AB=20,BC=20
考点:一元二次方程的应用.
24、(1)与的函数关系式为;(2)该设备的销售单价应是27 万元.
【分析】
(1)根据图像上点坐标,代入,用待定系数法求出即可.
(2)根据总利润=单个利润销售量列出方程即可.
【详解】
解:(1)设与的函数关系式为,
依题意,得解得
所以与的函数关系式为.
(2)依题知.
整理方程,得.
解得.
∵此设备的销售单价不得高于35万元,
∴(舍),所以.
答:该设备的销售单价应是27 万元.