人教版九年级上册数学21.3实际问题与一元二次方程--动态几何同步训练
一、单选题
1.如图,在中,,AB=,BC=.点从点开始沿边向点以的速度移动,同时点从点开始沿边向点以的速度移动,当其中一点到达终点时,另一点随即停止.当四边形的面积为时,点的运动时间为( )
A. B.或 C. D.或
2.如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P,Q两点从出发开始几秒时,点P和点Q的距离是10cm.(若一点到达终点,另一点也随之停止运动)( )
A.2s或s B.1s或s C.s D.2s或s
3.如图,在中,,cm,cm,动点,分别从点,同时开始移动(移动方向如图所示),点的速度为1cm/s,点的速度为2cm/s,点移动到点后停止,点也随之停止运动,若使的面积为15cm2,则点运动的时间是( )
A.s B.5s C.4s D.3s
4.如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB方向以1cm/s的速度向B运动,另一动点Q从A出发沿着AC方向以2cm/s的速度向C运动,P,Q两点同时出发,运动时间为t(s).当t为( )秒时,△PCQ的面积是△ABC面积的?
A.1.5 B.2 C.3或者1.5 D.以上答案都不对
5.如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )
A. B. C. D.
6.在平面直角坐标系中,一次函数的图像上有一点P,过点P分别向坐标轴作垂线段,若两垂线段与坐标轴围成面积为5的矩形,则符合条件的点P个数为 ( )
A.2 B.3 C.4 D.无数个
7.如图,在中,,点从点开始沿边向点以的速度匀速移动,同时另一点由点开始以的速度沿着射线匀速移动,当的面积等于时运动时间为( )
A.秒 B.秒 C.秒 D.秒或秒
8.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于( )
A.4 cm B.8 cm C.6 cm D.4 cm或8 cm
二、填空题
9.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,沿射线AB方向以1cm/s的速度移动,点Q从B点出发,沿射线BC方向以2cm/s的速度移动.如果P、Q两点同时出发,问:经过_________________秒后△PBQ的面积等于4cm2.
10.如图①,在矩形中,,对角线,相交于点,动点由点出发,沿向点运动设点的运动路程为,的面积为,与的函数关系图象如图②所示,则的长为______.
11.如图,在矩形中,,点从点出发沿以的速度向点运动,同时点从点出发沿以的速度向点运动,点到达终点后,、两点同时停止运动,则__秒时,的面积是.
12.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为t秒,有一点到终点运动即停止,当t=___时,S△DPQ=28cm2.
13.如图,将边长为4的正方形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移得到△A′B′C′,若两个三角形重叠部分的面积为3,则它移动的距离AA′等于 ___;移动的距离AA′等于 ___时,两个三角形重叠部分面积最大.
14.在矩形ABCD中,AB=8cm,BC=3cm,点P从点A出发沿AB以2cm/s的速度向终点B移动,同时,点Q从点C出发沿CD以3cm/s的速度向终点D移动,其中一个点到达终点,另一个点也停止运动. 经过_________秒P、Q两点之间的距离是5cm.
15.如图,在等腰中,,动点P从点A出发沿折线向点终B以的速度运动,于点Q.设运动时间为,当_______s时,的面积为.
16.如图,在矩形ABCD中,,,点P从点A出发沿AB以的速度向点B移动,若出发t秒后,,则_________秒.
三、解答题
17.如图,Rt△ABC中,∠C=90°,BC=4cm,∠ABC=30°.点P从点B出发,沿B→A→C以每秒3cm的速度向终点C运动,同时点Q从点B出发以每秒cm的速度向终点C运动,其中一点到达终点即停止.设点P的运动时间为t.
(1)当t=2秒时,求△BPQ的面积;
(2)PQ能否与△ABC的一条边平行,如果能,求出此时t的值;如不能,说明理由;
(3)△BPQ的面积能否为△ABC面积的三分之一?如果能,请求出的值;如果不能,请说明理由.
18.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.
(1)BP= cm;BQ= cm;(用t的代数式表示)
(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?
19.如图,在四边形中,,,,,,动点P从点B出发,沿射线的方向以每秒的速度运动到C点返回,动点Q从点A出发,在线段上以每秒的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间t(秒).
(1)求、的代数表达式;
(2)当t为何值时,四边形是平行四边形;
(3)当时,是否存在点P,使是等腰三角形?若存在,请直接写出所有满足要求的t的值;若不存在,请说明理由.
20.如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒 个单位长度的速度运动,且恰好能始终保持连接两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连接PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).
(1)当t=3时,求PD的长?
(2)当t为何值时,四边形BQPD的面积为△ABC面积的一半?
(3)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.
试卷第1页,共3页
参考答案:
1.C
2.D
3.D
4.B
5.C
6.A
7.D
8.D
9.2或4或
10.4
11.2或3
12.2或4
13. 1cm或3cm
14.或
15.或
16.4-
17.(1)3cm2
(2)不能
(3)能,t或
18.(1)(12﹣2t);4t
(2)t=2或4
19.(1),或
(2)当或秒时,四边形是平行四边形
(3)存在这样的P,使是等腰三角形,当秒或秒时,是等腰三角形
20.(1)4
(2)当 时,四边形BQPD的面积为三角形ABC面积的一半
(3)存在t的值,当t=2.4时,使四边形PDBQ为平行四边形
答案第1页,共2页