第十三章 轴对称
13.3 等腰三角形
13.3.2 等边三角形
第1课时
1.等边三角形的两条高线相交成钝角的度数是( )
A.105° B.120° C.135° D.150°
2.如图,等边三角形ABC的三条角平分线交于点O,DE∥BC,则这个图形中的等腰三角形共有( )
A. 4个 B. 5个
C. 6个 D. 7个
3.在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是( )
A.10° B.15° C.20° D.25°
4.如图,△ABC和△ADE都是等边三角形,已知△ABC的周长为18cm,EC =2cm,则△ADE的周长是______________ cm.
5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.求证:△AEF≌△BEC.
6如图,A,O,D三点共线,△OAB和△OCD是两个全等的等边三角形,求∠AEB的大小.
7. 图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.
(1)如图①,线段AN与线段BM是否相等?请说明理由;
(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.
参考答案:
1.B
2.D
3.B
4.12
5. 证明:∵△ABD是等边三角形,
∴∠DAB=60°,
∵∠CAB=30°,∠ACB=90°,
∴∠EBC=180°–90°–30°=60°,∴∠FAE=∠EBC.
∵E为AB的中点,∴AE=BE.
又∵ ∠AEF=∠BEC,
∴△AEF≌△BEC(ASA).
6. 解:∵△OAB和△OCD是两个全等的等边三角形.
∴AO=BO,CO=DO, ∠AOB=∠COD=60°.
∵ A,O,D三点共线,
∴∠DOB=∠COA=120°.
∴ △COA ≌△DOB(SAS).
∴ ∠DBO=∠CAO.
设OB与EA相交于点F,
∵ ∠EFB=∠AFO,
∴∠AEB=∠AOB=60°.
7. 解:(1)AN=BM.
∵△ACM与△CBN都是等边三角形,
∴AC=MC,CN=CB,
∠ACM=∠BCN=60°.
∴∠ACN=∠MCB.
∴△ACN≌△MCB(SAS).
∴AN=BM.
(2)△CEF是等边三角形.
证明:∵∠ACE=∠FCM=60°,
∴∠ECF=60°.
∵△ACN≌△MCB,
∴∠CAE=∠CMB.
∵AC=MC,
∴△ACE≌△MCF(ASA),
∴CE=CF.
∴△CEF是等边三角形.第十三章 轴对称
13.3 等腰三角形
13.3.2 等边三角形
第2课时
1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )
A.6米 B.9米
C.12米 D.15米
2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( )
A.300a元 B.150a元
C.450a元 D.225a元
3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC =___________ .
4.如图,Rt△ABC中,∠A= 30°,AB+BC=12cm,则AB=______cm.
5. 在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.
6. 在 △ABC中 ,AB=AC,∠BAC=120° ,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.
7. 如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
参考答案:
1.B
2.B
3.5
4.8
5. 解:连接AE,
∵DE是AB的垂直平分线,
∴BE=AE,∴∠EAB=∠B=15°,
∴∠AEC=∠EAB+∠B=30°.
∵∠C=90°,
∴AC= AE= BE=2.5.
6. 证明:∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°.
∵ D是BC的中点,∴AD⊥BC.
∴∠ADC=90°,∠BAD=∠DAC=60°.
∴AB=2AD.
∵DE⊥AB,∴∠AED=90°,
∴∠ADE=30°,∴AD=2AE.
∴AB=4AE,∴BE=3AE.
7. 证明:∵△ABC为等边三角形,
∴ AC=BC=AB ,∠C=∠BAC=60°,
∵CD=AE,
∴△ADC≌△BEA.
∴∠CAD=∠ABE.
∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.
∴∠BPQ=60°.
又∵ BQ⊥AD,
∴∠BQP=90°,
∴∠PBQ=30°,
∴BP=2PQ.