2022-2023学年苏科版七年级数学上册3.6整式的加减 计算能力达标测评(word、含答案)

文档属性

名称 2022-2023学年苏科版七年级数学上册3.6整式的加减 计算能力达标测评(word、含答案)
格式 docx
文件大小 53.0KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-08-17 18:03:47

图片预览

文档简介

2022-2023学年苏科版七年级数学上册《3.6整式的加减》计算能力自主达标测评(附答案)
(共20小题,每小题6分,满分120分)
1.先化简,再求值:6a2﹣2b2+3(a2﹣b2)﹣2(5a2﹣4b2),其中a=﹣1,b=.
2.先化简,再求值:2(a3﹣2b2)﹣(a﹣2b)﹣(a﹣3b2+2a3),其中:a=﹣1,b=1.
3.先化简,再求值:已知2a=b,求2(3ab+a﹣2b)﹣3(2ab﹣b)+5的值.
4.化简,求值:
(1)2(a2﹣2ab+1)﹣(﹣3+a2﹣ab);
(2)先化简,再求值:﹣2(xy﹣y+x2)﹣(﹣2xy+3y),其中x=﹣,y=2.
5.已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.
(1)化简2A﹣3B;
(2)当x+y=,xy=﹣1,求2A﹣3B的值;
(3)若2A﹣3B的值与y的取值无关,求2A﹣3B的值.
6.先化简,再求值:3(2a2b+ab2)﹣(3ab2﹣a2b),其中a=﹣1,ab=2.
7.(1)化简:p2+3p﹣(8p2﹣5p);
(2)先化简再求值:﹣a2b+3(2ab2﹣a2b+1)﹣2(3ab2﹣a2b)﹣2,其中a=1,b=﹣2.
8.先化简,再求值:,其中x=.
9.计算:
(1)5x3y+x3y+3xy2﹣8xy2;
(2)(2xy﹣y﹣)﹣(x+xy+),其中x=4,y=.
10.先化简再求值:2(x2y+xy)﹣3(x2y﹣xy﹣1),其中x=﹣2,y=1.
11.(1)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=;
(2)若关于x,y的多项式my3+3nx2y+2y3﹣x2y+y不含三次项,求m与n的值.
12.已知M=4x2+10x+2y2,N=2x2﹣2y+y2,求:
(1)M﹣2N;
(2)当5x+2y=2时,求M﹣2N的值.
13.已知3x2ay1﹣b与x2y3是同类项.
(1)求a,b的值; (2)求5a2﹣2(3b2﹣4ab)+(2b2﹣5a2)的值.
14.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.
15.已知:A=x3+2x+3,B=2x3﹣xy+2.
(1)求2A﹣B; (2)当x=1,y=﹣2,求2A﹣B的值.
16.已知a﹣2b=4,求3a+(b﹣a)﹣(5b﹣1)的值.
17.先化简,再求值:2(a2﹣2b﹣1)﹣4(1﹣b+a2),其中a=﹣1,b=.
18.先化简,再求值:3(2a2b﹣4ab2)﹣(﹣3ab2+6a2b),其中a=1,b=﹣.
19.先化简,再求值:9y+6x2﹣3(y﹣x2),其中x=﹣2,y=﹣.
20.化简:
(1)5a﹣(﹣3a+5b);
(2)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)其中x=﹣2,y=
参考答案
1.解:6a2﹣2b2+3(a2﹣b2)﹣2(5a2﹣4b2)
=6a2﹣2b2+3a2﹣3b2﹣10a2+8b2
=6a2+3a2﹣10a2﹣2b2﹣3b2+8b2
=﹣a2+3b2,
∵,
∴原式=

=.
2.解:原式=2a3﹣4b2﹣a+2b﹣a+3b2﹣2a3
=﹣b2﹣2a+2b,
∵a=﹣1,b=1,
∴原式=﹣12﹣2×(﹣1)+2×1
=﹣1+2+2
=3.
3.解:2(3ab+a﹣2b)﹣3(2ab﹣b)+5
=6ab+2a﹣4b﹣6ab+3b+5
=2a﹣b+5,
∵2a=b,
∴原式=b﹣b+5=5.
4.解:(1)2(a2﹣2ab+1)﹣(﹣3+a2﹣ab)
=2a2﹣4ab+2+3﹣a2+ab
=(2a2﹣a2)+(﹣4ab+ab)+(2+3)
=a2﹣3ab+5;
(2)﹣2(xy﹣y+x2)﹣(﹣2xy+3y)
=﹣2xy+y﹣x2+2xy﹣3y
=﹣x2﹣y,
∵x=﹣,y=2,
∴原式=﹣(﹣)2﹣×2
=﹣﹣5
=﹣5.
5.解:(1)∵A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy,
∴2A﹣3B
=2(3x2﹣x+2y﹣4xy)﹣3(2x2﹣3x﹣y+xy)
=6x2﹣2x+4y﹣8xy﹣6x2+9x+3y﹣3xy
=7x+7y﹣11xy;
(2)当x+y=,xy=﹣1时,
2A﹣3B=7x+7y﹣11xy
=7(x+y)﹣11xy
=7×﹣11×(﹣1)
=6+11
=17;
(3)∵2A﹣3B=7x+7y﹣11xy
=7x+(7﹣11x)y,
∴若2A﹣3B的值与y的取值无关,则7﹣11x=0,
∴x=,
∴2A﹣3B
=7×+0
=.
6.解:3(2a2b+ab2)﹣(3ab2﹣a2b)
=6a2b+3ab2﹣3ab2+a2b
=7a2b,
当a=﹣1,ab=2时,
原式=7×(﹣1)×2=﹣14.
7.解:(1)p2+3p﹣(8p2﹣5p)
=p2+3p﹣8p2+5p
=﹣7p2+8p;
(2)﹣a2b+3(2ab2﹣a2b+1)﹣2(3ab2﹣a2b)﹣2
=﹣a2b+6ab2﹣3a2b+3﹣6ab2+2a2b﹣2
=﹣2a2b+1,
当a=1,b=﹣2时,
原式=﹣2×1×(﹣2)+1=5.
8.解:原式=﹣x2+x﹣2﹣x+2
=﹣x2﹣x;
当x=时,
原式=﹣()2﹣×
=﹣﹣
=﹣.
9.解:(1)原式=6x3y﹣5xy2;
(2)原式=2xy﹣﹣x﹣xy﹣
=xy﹣y﹣x﹣2,
把x=4,y=代入xy﹣y﹣x﹣2中,
原式=×4×﹣×﹣×4﹣2
=5﹣﹣1﹣2
=.
10.解:原式=2x2y+2xy﹣3x2y+3xy+3
=﹣x2y+5xy+3
=xy(﹣x+5)+3,
把x=﹣2,y=1代入xy(﹣x+5)+3中,
原式=﹣2×1×[﹣(﹣2)+5]+3=﹣11.
11.解:(1)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,
当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6;
(2)my3+3nx2y+2y3﹣x2y+y
=(m+2)y3+(3n﹣1)x2y+y,
由多项式不含三次项,得到m+2=0,3n﹣1=0,
解得:m=﹣2,n=.
12.解:(1)∵M=4x2+10x+2y2,N=2x2﹣2y+y2,
∴M﹣2N=(4x2+10x+2y2)﹣2(2x2﹣2y+y2)
=4x2+10x+2y2﹣4x2+4y﹣2y2
=10x+4y;
(2)∵5x+2y=2,
∴M﹣2N=10x+4y=2(5x+2y)=4.
13.解:(1)∵3x2ay1﹣b与x2y3是同类项,
∴2a=2,1﹣b=3,
解得:a=1,b=﹣2;
(2)5a2﹣2(3b2﹣4ab)+(2b2﹣5a2)
=5a2﹣6b2+8ab+2b2﹣5a2
=﹣4b2+8ab,
当a=1,b=﹣2时,
原式=﹣4×(﹣2)2+8×1×(﹣2)
=﹣16﹣16
=﹣32.
14.解:原式=a+10a﹣6b﹣3a+9b
=8a+3b,
当时,
原式=
=﹣5.
15.解:(1)∵A=x3+2x+3,B=2x3﹣xy+2,
∴2A﹣B=2(x3+2x+3)﹣(2x3﹣xy+2)
=2x3+4x+6﹣2x3+xy﹣2
=4x+xy+4;
(2)当x=1,y=﹣2时,2A﹣B=4x+xy+4=4﹣2+4=6.
16.解:3a+(b﹣a)﹣(5b﹣1)
=3a+b﹣a﹣5b+1
=2a﹣4b+1,
∵a﹣2b=4,
∴2a﹣4b=8,
∴原式=8+1=9.
17.解:原式=2a2﹣4b﹣2﹣4+4b﹣4a2
=﹣2a2﹣6;
当a=﹣1,b=时,
原式=﹣2×(﹣1)2﹣6
=﹣2﹣6
=﹣8.
18.解:原式=6a2b﹣12ab2+3ab2﹣6a2b
=﹣9ab2;
当a=1,b=﹣时,
原式=﹣9×1×(﹣)2
=﹣1.
19.解:原式=9y+6x2﹣3y+2x2
=6y+8x2;
当x=﹣2,y=﹣时,
原式=6×(﹣)+8×(﹣2)2
=﹣4+8×4
=28.
20.解:(1)5a﹣(﹣3a+5b)
=5a+3a﹣5b
=8a﹣5b;
(2)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)
=4xy﹣2x2﹣5xy+y2+2x2+6xy
=5xy+y2,
当x=﹣2,y= 时,
原式=5xy+y2=5×(﹣2)×+=.