中小学教育资源及组卷应用平台
专题13 计算弧长与扇形面积
【热考题型】
【重难点突破】
考查题型一 利用弧长公式进行计算
1.如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为( )
A.4, B.3,π C.2, D.3,2π
2.如图,扇形纸扇完全打开后,扇面(即扇形ABC)的面积为cm2,竹条AB,AC的长均为18 cm,D,E分别为AB,AC的中点,则 的长为( )
A.cm B.cm C.cm D.cm
3.一个扇形的弧长是,其圆心角是150°,此扇形的面积为( )
A. B. C. D.
4.如图,小明用图中的扇形纸片作一个圆锥的侧面,已知扇形的圆心角为216°,面积是15πcm2,那么这个圆锥的底面半径是( )
A.2cm B.3cm C.4cm D.5cm
5.扇形的半径为,扇形的面积,则该扇形的圆心角为( )
A. B. C. D.
6.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形若其中一个扇形的弧长为,则另一个扇形的圆心角度数是多少?( )
A.30 B.60 C.105 D.210
7.一个钟表的时针长10厘米,在中午12时到下午3时,时针的针尖划过的弧长是( )厘米.
A. B. C. D.
8.如图是边长为1的正方形组成的网格,△ABC的顶点都在格点上,将△ABC绕点C逆时针旋转60°,则顶点B所经过的路径长为( )
A. B. C. D.
考查题型二 计算扇形的面积
9.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为( )
A. B. C. D.
10.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm为半径作圆.则图中阴影部分面积为( )
A.(2-π)cm2 B.(π-)cm2 C.(4-2π)cm2 D.(2π-2)cm2
11.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )
A. B. C. D.
12.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为( )
A. B. C. D.π
13.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若,且,则的长为( )
A.6 B.7 C.8 D.10
14.如图,一个半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是
A. B.-2 C.- D.2-
15.如图,半径为的扇形中,,为上一点,,,垂足分别为、.若为,则图中阴影部分的面积为( )
A. B. C. D.
16.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
考查题型三 与圆锥有关的计算
17.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为( )
A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2
18.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )
A.60π B.65π C.78π D.120π
19.如图,从一块直径是2的圆形铁片上剪出一个圆心角为的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )
A. B. C. D.1
20.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( )
A.10 B.20 C.10π D.20π
21.如图,有一块半径为,圆心角为的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( ).
A. B. C. D.
22.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是( )
A.5cm B.10cm C.6cm D.5cm
23.已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为( )
A.214° B.215° C.216° D.217°
24.已知圆锥的母线长为3,底面圆半径为1,则圆锥侧面展开图的圆心角为( )
A.30° B.60° C.120° D.150°
25.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为( )
A.米2 B.米2
C.米2 D.米2
26.云南是全国拥有少数民族数量最多的省份,风俗文化多种多样,使得“云南十八怪”成为云南旅游文化的一张名片,图①是十八怪中的“草帽当锅盖”,图②是一个草帽的三视图,根据图中所给的数据计算出该草帽的侧面积为( )
A. B. C. D.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题13 计算弧长与扇形面积
【热考题型】
【重难点突破】
考查题型一 利用弧长公式进行计算
1.如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为( )
A.4, B.3,π C.2, D.3,2π
【详解】
解:连接、,
六边形为正六边形,
,
,
为等边三角形,
,
,
,
的长为.
故选:D.
2.如图,扇形纸扇完全打开后,扇面(即扇形ABC)的面积为cm2,竹条AB,AC的长均为18 cm,D,E分别为AB,AC的中点,则 的长为( )
A.cm B.cm C.cm D.cm
【详解】
,D,E分别为AB,AC的中点,
,
扇面(即扇形ABC)的面积为cm2,
,
解得,
,
,
故选:C.
3.一个扇形的弧长是,其圆心角是150°,此扇形的面积为( )
A. B. C. D.
【详解】
解:该扇形的半径为:,
∴扇形的面积为:,
故选:B.
4.如图,小明用图中的扇形纸片作一个圆锥的侧面,已知扇形的圆心角为216°,面积是15πcm2,那么这个圆锥的底面半径是( )
A.2cm B.3cm C.4cm D.5cm
【详解】
解:设扇形的半径为r,根据题意得:
,解得:,
∴扇形的弧长为,
∴这个圆锥的底面半径是.
故选:B
5.扇形的半径为,扇形的面积,则该扇形的圆心角为( )
A. B. C. D.
【详解】
解:设扇形的圆心角是n°,
根据题意可知:S=即,
解得n=90.
故选:C.
6.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形若其中一个扇形的弧长为,则另一个扇形的圆心角度数是多少?( )
A.30 B.60 C.105 D.210
【详解】
解:由题意可求得圆的周长,
其中一个扇形的弧长,则另一个扇形的弧长,
设另一个扇形的圆心角度数为,
根据弧长公式:,有:
,解得,
故选:D.
7.一个钟表的时针长10厘米,在中午12时到下午3时,时针的针尖划过的弧长是( )厘米.
A. B. C. D.
【详解】
从中午12时到下午3时,时针转过90°,所以时针针尖划过的弧长为厘米,
故选:B.
8.如图是边长为1的正方形组成的网格,△ABC的顶点都在格点上,将△ABC绕点C逆时针旋转60°,则顶点B所经过的路径长为( )
A. B. C. D.
【详解】
解:BC==,
所以顶点B所经过的路径长=.
故选:B.
考查题型二 计算扇形的面积
9.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为( )
A. B. C. D.
【详解】
解:如图,连接PA、PB、OP,
则S半圆O=,S△ABP=×2×1=1,
由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)
=4(﹣1)=2π﹣4,
∴米粒落在阴影部分的概率为,
故选A.
10.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm为半径作圆.则图中阴影部分面积为( )
A.(2-π)cm2 B.(π-)cm2 C.(4-2π)cm2 D.(2π-2)cm2
【详解】
连接AD,
∵△ABC是正三角形,
∴AB=BC=AC=4,∠BAC=∠B=∠C=60°,
∵BD=CD,
∴AD⊥BC,
∴AD==,
∴S阴影=S△ABC-3S扇形AEF=×4×2﹣=(4﹣2π)cm2,
故选C.
11.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )
A. B. C. D.
【详解】
由图可知,将△OAC顺时针旋转90°后可与△ODB重合,
∴S△OAC=S△OBD;
因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.
故选C.
12.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为( )
A. B. C. D.π
【详解】
解:在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,∴AC=,AB=4,∵将Rt△ABC绕点A逆时针旋转90°得到Rt△ADE,∴△ABC的面积等于△ADE的面积,∠CAB=∠DAE,AE=AC=,AD=AB=4,∴∠CAE=∠DAB=90°,∴阴影部分的面积S=S扇形BAD+S△ABC﹣S扇形CAE﹣S△ADE=+×2×﹣﹣×2×=π.故选D.
13.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若,且,则的长为( )
A.6 B.7 C.8 D.10
【详解】
解:由勾股定理得,AC2+BC2=AB2,
∵S1+S2=7,
∴×π×()2+×π×()2+×AC×BC ×π×()2=7,
∴AC×BC=14,
AB===6,
故选:A.
14.如图,一个半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是
A. B.-2 C.- D.2-
【详解】
解:如图,连接OM交AB于点C,连接OA、OB,
由题意知,OM⊥AB,且OC=MC=1,
在RT△AOC中,∵OA=2,OC=1,
∴cos∠AOC= ,AC=
∴∠AOC=60°,AB=2AC=2 ,
∴∠AOB=2∠AOC=120°,
则S弓形ABM=S扇形OAB-S△AOB= ,
S阴影=S半圆-2S弓形ABM= .
故选D.
15.如图,半径为的扇形中,,为上一点,,,垂足分别为、.若为,则图中阴影部分的面积为( )
A. B. C. D.
【详解】
连接OC交DE为F点,如下图所示:
由已知得:四边形DCEO为矩形.
∵∠CDE=36°,且FD=FO,
∴∠FOD=∠FDO=54°,△DCE面积等于△DCO面积.
.
故选:A.
16.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
【详解】
解:连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
考查题型三 与圆锥有关的计算
17.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为( )
A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2
【详解】
根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,
所以圆锥的母线长=,
所以这个圆锥的侧面积=×2π×5×13=65π(cm2).
故选B.
18.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )
A.60π B.65π C.78π D.120π
【详解】
解:由题意可得:圆锥的底面半径为5,母线长为:,
该圆锥的侧面积为:π×5×13=65π.
故选B.
19.如图,从一块直径是2的圆形铁片上剪出一个圆心角为的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )
A. B. C. D.1
【详解】
解:如下图:
连接BC,AO,
∵,
∴BC是直径,且BC=2,
又∵,
∴,
又∵, ,
∴ ,
∴的长度为:,
∴围成的底面圆周长为,
设圆锥的底面圆的半径为,
则:,
∴.
故选:
20.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( )
A.10 B.20 C.10π D.20π
【详解】
设圆锥的底面圆半径为r,依题意,得
解得r=10.
故圆锥的底面半径为10.
故选A.
21.如图,有一块半径为,圆心角为的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( ).
A. B. C. D.
【详解】
解:设圆锥的底面周长是l,则l=m,
则圆锥的底面半径是:m,
则圆锥的高是:m.
故选:C.
22.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是( )
A.5cm B.10cm C.6cm D.5cm
【详解】
设圆锥的母线长为R,
根据题意得2π 5,
解得R=10.
即圆锥的母线长为10cm,
∴圆锥的高为:5cm.
故选A.
23.已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为( )
A.214° B.215° C.216° D.217°
【详解】
解:由圆锥的高为4,底面直径为6,
可得母线长,
圆锥的底面周长为:,
设圆心角的度数为n,
则,
解得:,
故圆心角度数为:,
故选:C.
24.已知圆锥的母线长为3,底面圆半径为1,则圆锥侧面展开图的圆心角为( )
A.30° B.60° C.120° D.150°
【详解】
解:圆锥侧面展开图的弧长是:2π×1=2π,
设圆心角的度数是n度,
则=2π,
解得:n=120.
故选:C.
25.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为( )
A.米2 B.米2
C.米2 D.米2
【详解】
解:∵底面半径=5米,圆锥高为2米,圆柱高为3米,
∴圆锥的母线长=米,
∴圆锥的侧面积=,
圆柱的侧面积=底面圆周长×圆柱高,
即,
故需要的毛毡:米,
故选:A.
26.云南是全国拥有少数民族数量最多的省份,风俗文化多种多样,使得“云南十八怪”成为云南旅游文化的一张名片,图①是十八怪中的“草帽当锅盖”,图②是一个草帽的三视图,根据图中所给的数据计算出该草帽的侧面积为( )
A. B. C. D.
【详解】
解:∵圆锥的底面直径为48cm,则半径为=24,又∵圆锥的高为10cm,∴圆锥的母线长为: ,圆锥的底面周长(扇形的弧长)为:2r=48,
∴该圆锥的侧面积=×48π×26=624π,
故选C.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)