第9章 平行线达标测试卷(含解析)

文档属性

名称 第9章 平行线达标测试卷(含解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 青岛版
科目 数学
更新时间 2022-08-19 08:42:25

图片预览

文档简介

中小学教育资源及组卷应用平台
青岛版七年级数学下册第9章平行线达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的 ( http: / / www.21cnjy.com )位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【来源:21·世纪·教育·网】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,己知,,若,则等于( )
( http: / / www.21cnjy.com / )
A.65° B.90° C.25° D.70°
2、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
3、如图,已知直线,直线c被直线a、b所截,若,则( )
( http: / / www.21cnjy.com / )
A.62° B.28° C.128° D.118°
4、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )
( http: / / www.21cnjy.com / )
A.只有 B.只有 C.和均可 D.和均可
5、如图,已知直线、被直线所截,,,则为( )
( http: / / www.21cnjy.com / )
A.40° B.50° C.60° D.70°
6、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.2·1·c·n·j·y
( http: / / www.21cnjy.com / )
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
7、将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为(  )
( http: / / www.21cnjy.com / )
A.95° B.100° C.105° D.110°
8、若直线a∥b,b∥c,则a∥c的依据是( ).A.平行的性质 B.等量代换
C.平行于同一直线的两条直线平行. D.以上都不对
9、如图,将矩形纸条ABCD折叠,折 ( http: / / www.21cnjy.com )痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
A.77° B.64° C.26° D.87°
10、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
( http: / / www.21cnjy.com / )
A.39° B.41° C.49° D.51°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.
( http: / / www.21cnjy.com / )
2、如图,E在AD的延长线上,下列四个条件 ( http: / / www.21cnjy.com ):①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)21cnjy.com
( http: / / www.21cnjy.com / )
3、如图,已知DE∥BC,∠ABC=70°,那么直线AB与直线DE的夹角等于 ___度.
( http: / / www.21cnjy.com / )
4、如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=34°,则∠2=_____°.
( http: / / www.21cnjy.com / )
5、两条射线或线段平行,是指_______________________.
三、解答题(5小题,每小题10分,共计50分)
1、已知直线AB∥CD,P为平面内一点,连接PA、PD.
(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;
(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为    .
(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.
( http: / / www.21cnjy.com / )
2、如图,已知,平分,平分,求证.
( http: / / www.21cnjy.com / )
证明:∵平分(已知),
∴ ( ),
同理 ,
∴ ,
又∵(已知)
∴ ( ),
∴.
3、如图直线,直线与分别和交于点交直线b于点C.
( http: / / www.21cnjy.com / )
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
4、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(    )
∵MN∥AB,
∴∠A=(    )(    )
∵MN∥CD,
∴∠D=    (    )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.21*cnjy*com
( http: / / www.21cnjy.com / )
5、如图,在方格纸中,点C在直线AB外,
( http: / / www.21cnjy.com / )
(1)请作直线BC,则直线AB与直线BC的位置关系为______;
(2)过点C,作直线.
-参考答案-
一、单选题
1、A
【解析】
【分析】
先根据a⊥c,b⊥c,可得a∥b,根据平行线的性质可得∠1=∠3,再根据对顶角的性质即可得出答案.
【详解】
解:因为a⊥c,b⊥c,
所以a∥b,
所以∠1=∠3=65°,
所以∠2=∠3=65°.
故选:A.
【点睛】
本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行计算是解决本题的关键.
2、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之 ( http: / / www.21cnjy.com )间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.【来源:21cnj*y.co*m】
3、D
【解析】
【分析】
根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.
【详解】
解:∵a∥b,∠1=62°,
( http: / / www.21cnjy.com / )
∴∠3=∠1=62°,
∴∠2=180°∠3=118°.
故选:D.
【点睛】
此题考查了平行线的性质与邻补角的定义.此题比较简单,解题的关键是熟练掌握两直线平行,同位角相等定理的应用.【出处:21教育名师】
4、C
【解析】
【分析】
由平行线之间的距离的定义判定即可得解.
【详解】
解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,
线段和都可以示直线与之间的距离,
故选:C.
【点睛】
本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.
5、A
【解析】
【分析】
根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.
【详解】
解:如图,
( http: / / www.21cnjy.com / )
∵AB//CD,
∴∠2=∠D,
∵∠1=140°,
∴∠D=∠2=180° ∠1=180° 140°=40°,
故选:A.
【点睛】
此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
6、D
【解析】
【分析】
根据方向角的概念,和平行线的性质求解.
【详解】
解:如图:
( http: / / www.21cnjy.com / )
∵AF∥DE,
∴∠ABE=∠FAB=43°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠CBD=180°﹣90°﹣43°=47°,
∴C地在B地的北偏西47°的方向上.
故选:D.
【点睛】
本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
7、C
【解析】
【分析】
根据平角的定义和平行线的性质即可得到答案.
【详解】
如图:
∵∠2=180°﹣30°﹣45°=105°,
∵AB∥CD,
∴∠1=∠2=105°,
故选:C.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.
8、C
【解析】
【分析】
根据平行公理的推论进行判断即可.
【详解】
解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,
故选:C.
【点睛】
本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.
9、A
【解析】
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.21·cn·jy·com
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
10、C
【解析】
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
( http: / / www.21cnjy.com / )
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握 ( http: / / www.21cnjy.com )平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.【版权所有:21教育】
二、填空题
1、
【解析】
【分析】
如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.
【详解】
解:如图,,


故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.
2、②③④
【解析】
【分析】
根据平行线的判定定理,逐一判断,即可得到答案.
【详解】
∵,
∴,
∴①不符合题意;
∵∠C+∠ABC=180°,
∴AB∥CD;
∴②符合题意;
∵∠A=∠CDE,
∴AB∥CD;
∴③符合题意;
∵∠1=∠2,
∴AB∥CD.
故答案为:②③④.
【点睛】
本题主要考查平行线的判定定 ( http: / / www.21cnjy.com )理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.21·世纪*教育网
3、70或110##110或70
【解析】
【分析】
先根据平行线的性质,求得∠AFE的度数,再根据邻补角的定义,即可得到∠AFD的度数.
【详解】
解:如图,直线AB和DE相交于点F,
( http: / / www.21cnjy.com / )
∵BC∥DE,∠ABC=70°,
∴∠AFE=∠ABC=70°,∠AFD=180°-∠AFE=110°,
∴直线AB、DE的夹角是70°或110°.
故答案为:70或110.
【点睛】
本题主要考查了平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.
4、56
【解析】
【分析】
先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=34°,
∴∠3=90°﹣34°=56°.
∵直尺的两边互相平行,
∴∠2=∠3=56°.
故答案为:56.
( http: / / www.21cnjy.com / )
【点睛】
本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21教育名师原创作品
5、射线或线段所在的直线平行
【解析】
【分析】
根据直线、线段、射线的关系以及平行线的知识进行解答.
【详解】
解:两条射线或线段平行,是指:射线或线段所在的直线平行,
故答案为:射线或线段所在的直线平行.
【点睛】
本题考查了直线、线段、射线以及平行线的问题,本题是对基础知识的考查,记忆时一定要注意公理或定义、性质成立的前提条件.www.21-cn-jy.com
三、解答题
1、(1)∠APD=80°;(2)∠PAB+∠CDP-∠APD=180°;(3)∠AND=45°.
【解析】
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;21*cnjy*com
(2)作PQ∥AB,易得AB∥PQ∥CD,根据平行线的性质,即可证得∠PAB+∠CDP-∠APD=180°;
(3)先证明∠NOD=∠PAB,∠ODN=∠PDC,利用(2)的结论即可求解.
【详解】
解:(1)∵∠A=50°,∠D=150°,
过点P作PQ∥AB,
( http: / / www.21cnjy.com / )
∴∠A=∠APQ=50°,
∵AB∥CD,
∴PQ∥CD,
∴∠D+∠DPQ=180°,则∠DPQ=180°-150°=30°,
∴∠APD=∠APQ+∠DPQ=50°+30°=80°;
(2)∠PAB+∠CDP-∠APD=180°,
如图,作PQ∥AB,
( http: / / www.21cnjy.com / )
∴∠PAB=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠CDP+∠DPQ=180°,即∠DPQ=180°-∠CDP,
∵∠APD=∠APQ-∠DPQ,
∴∠APD=∠PAB-(180°-∠CDP)=∠PAB+∠CDP-180°;
∴∠PAB+∠CDP-∠APD=180°;
(3)设PD交AN于O,如图,
( http: / / www.21cnjy.com / )
∵AP⊥PD,
∴∠APO=90°,
由题知∠PAN+∠PAB=∠APD,即∠PAN+∠PAB=90°,
又∵∠POA+∠PAN=180°-∠APO=90°,
∴∠POA=∠PAB,
∵∠POA=∠NOD,
∴∠NOD=∠PAB,
∵DN平分∠PDC,
∴∠ODN=∠PDC,
∴∠AND=180°-∠NOD-∠ODN=180°-(∠PAB+∠PDC),
由(2)得∠PAB+∠CDP-∠APD=180°,
∴∠PAB+∠PDC=180°+∠APD,
∴∠AND=180°-(∠PAB+∠PDC)
=180°-(180°+∠APD)
=180°-(180°+90°)
=45°,
即∠AND=45°.
【点睛】
本题考查了平行线的性质以及角平分线的定义.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
2、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
【解析】
【分析】
由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.21世纪教育网版权所有
【详解】
证明:∵BE平分∠ABC(已知),
∴∠2=∠ABC(角平分线的定义),
同理∠1=∠BCD,
∴∠1+∠2=(∠ABC+∠BCD),
又∵AB∥CD(已知)
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
∴∠1+∠2=90°.
故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.21教育网
【点睛】
本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
3、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【解析】
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
( http: / / www.21cnjy.com / )
∵,
∴为直角三角形,
∴,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
4、基础问题:平行于同一条直线的 ( http: / / www.21cnjy.com )两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.2-1-c-n-j-y
【解析】
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB ( http: / / www.21cnjy.com ),过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
( http: / / www.21cnjy.com / )
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
5、 (1)见解析,垂直
(2)见解析
【解析】
【分析】
(1)根据直线的定义作图即可,根据位置关系判断直线AB与直线BC垂直;
(2)根据直线平移的性质作图即可.
(1)
解:图,直线BC即为所求.直线AB与直线BC的位置关系为垂直,
故答案是:垂直;
( http: / / www.21cnjy.com / )
(2)
解:如图,直线CD即为所求.
【点睛】
此题考查了作图能力:作直线,作平行线,熟记直线的定义及直线平移的性质是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)