中小学教育资源及组卷应用平台
青岛版七年级数学下册第10章一次方程组专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的 ( http: / / www.21cnjy.com )位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【来源:21cnj*y.co*m】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、观察下列方程其中是二元一次方程是( )
A.5x﹣y=35 B.xy=16
C.2x2﹣1=0 D.3z﹣2(z+1)=6
2、某学校体育场的环形跑 ( http: / / www.21cnjy.com )道长250m,甲、乙分别以一定的速度练习长跑和骑自行车,同时同地出发,如果反向而行,那么他们每隔20s相遇一次.如果同向而行,那么每隔50s乙就追上甲一次,设甲的速度为xm/s,乙的速度为ym/s,则可列方程组为( )21·世纪*教育网
A. B.
C. D.
3、在一次爱心捐助活动中,八年级(1)班40 ( http: / / www.21cnjy.com )名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )www-2-1-cnjy-com
A. B.
C. D.
4、某校有两种类型的学生宿舍 ( http: / / www.21cnjy.com )30间,大宿舍每间可住8人,小宿舍每间可住5人.该校198个住宿生恰好住满30间宿舍.设大宿舍有x间,小宿舍有y间,得方程组:( )
A. B.
C. D.
5、方程x+y=6的正整数解有( )
A.5个 B.6个 C.7个 D.无数个
6、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.【版权所有:21教育】
A.2 B.3 C.4 D.5
7、我校在举办“书香文化节” ( http: / / www.21cnjy.com )的活动中,将x本图书分给了y名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程正确的是( )
A. B. C. D.
8、已知是二元一次方程的一组解,则a的值是( )
A.1 B. C.2 D.
9、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )
A.5组 B.6组 C.7组 D.8组
10、下列方程中,是二元一次方程组的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是方程2x+ay=7的一个解,那么a=_____.
2、一年一度的南开校运会即将开幕 ( http: / / www.21cnjy.com ),“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.21*cnjy*com
3、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
4、我国古代《算法统宗》里有这 ( http: / / www.21cnjy.com )样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组:_____.
5、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.
三、解答题(5小题,每小题10分,共计50分)
1、已知和都是方程ax﹣y=b的解,求a、b.
2、茜茜数码专卖店销售容量分别为、、、和的五种移动盘,2020年10月1日的销售情况如下表:
盘容量 1 2 4 8 16
销售数量(只 5 6 3
(1)由于不小心,表中销售数量中,和销售数量被污染,但知道的销售数量比的销售数量的2倍少2只,且5种盘的销售总量是30只.求和的销售数量.2-1-c-n-j-y
(2)若移动盘的容量每增加,其销售单价增加10元,已知2020年10月1日当天销售这五种盘的营业额是2730元,求容量为的移动盘的销售单价是多少元?
3、解方程组:.
4、春节临近,坚果和炒货都进入销售旺季, ( http: / / www.21cnjy.com )某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.
(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?
(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.
5、为庆祝伟大的中国共产党成立100周年 ( http: / / www.21cnjy.com ),某校德育处举行了以“学史明理,学史增信,学史崇德,学史力行”为主题的党史知识竟赛.竟赛共有50道题,满分100分,每答对一题得2分,答错扣1分,不答得0分.
(1)小芳同学只有一道题没有作答,最后她的总得分为86分,则她答对了多少道题?
(2)若规定参赛者总得分90分及以上才可以 ( http: / / www.21cnjy.com )被评为“学党史小达人”,小敏同学的得分正好符合评奖的最低控制分数从而被评为“学党史小达人”,则她答对了多少道题?
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据二元一次方程的定义解答即可.
【详解】
解:A、该方程符合二元一次方程的定义,符合题意.
B、该方程是二元二次方程,不符合题意.
C、该方程是一元二次方程,不符合题意.
D、该方程是一元一次方程,不符合题意.
故选:A.
【点睛】
本题主要考查了二元一次方程的定义,含有两个未知数且每个未知数的次数均为1的方程是二元一次方程.
2、A
【解析】
【分析】
利用路程=速度×时间,结合“如果 ( http: / / www.21cnjy.com )反向而行,那么他们每隔20s相遇一次;如果同向而行,那么每隔50s乙就追上甲一次”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
解:∵如果反向而行,那么他们每隔20s相遇一次,
∴20(x+y)=250;
∵如果同向而行,那么每隔50s乙就追上甲一次,
∴50(y﹣x)=250.
∴所列方程组为.
故选:A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
3、C
【解析】
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
4、B
【解析】
【分析】
根据题意可以列出相应的二元一次方程组,本题得以解决.
【详解】
解:设大宿舍有x间,小宿舍有y间,
由题意可得,
,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解题的关键是明确题意,找出所求问题需要的条件.
5、A
【解析】
【分析】
根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可
【详解】
解:方程的正整数解有,,,,共5个,
故选:A.
【点睛】
本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.
6、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
7、B
【解析】
【分析】
设这个班有y名同学,x本图书,根据题意可得:总图书数=人数×6+40,总图书数=人数×8-50,据此列方程组.2·1·c·n·j·y
【详解】
解:设这个班有y名同学,x本图书,
根据题意可得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.21*cnjy*com
8、A
【解析】
【分析】
把x与y代入方程计算即可求出a的值.
【详解】
解:把代入方程得:,
移项合并得:,
解得:.
故选:A.
【点睛】
题目主要考查二元一次方程的解及解一元一次方程,理解题意,熟练掌握运用方程解法是解题关键.
9、B
【解析】
【分析】
设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.
【详解】
解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,
由题意得,8x+7y+(12﹣x﹣y)×5=80,
∴3x+2y=20,
当x=1时,y=,
当x=2时,y=7,
当x=4时,y=4,
当x=6时,y=1,
∴8人组最多可能有6组,
故选B.
【点睛】
本题考查了二元一次方程的应用,正确的理解题意是解题的关键.
10、B
【解析】
【分析】
根据二元一次方程组的定义解答.
【详解】
解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;
B符合定义,故是二元一次方程组;
C中含有分式,故不符合定义;
D含有三个未知数,故不符合定义;
故选:B.
【点睛】
此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.21·cn·jy·com
二、填空题
1、-1
【解析】
【分析】
根据方程的解的概念将方程的解代入原方程,然后计算求解.
【详解】
解:由题意可得:2×3﹣a=7,
解得:a=﹣1,
故答案为:﹣1.
【点睛】
本题考查二元一次方程的解和解一元一次方程,理解方程的解的概念是解题关键.
2、63
【解析】
【分析】
设每行5人的队列有a列,每行6人的队列有b列,班级共x人,列方程组,得到队列的人数是30的倍数,进而得到队列人数为60人,据此求出答案.【来源:21·世纪·教育·网】
【详解】
解:设每行5人的队列有a列,每行6人的队列有b列,班级共x人,则
,
∴队列的人数是5的倍数,也是6的倍数,即30的倍数,
∵班级的学生人数超过40人但又不多于80人,
∴队列人数为60人,
∴班级人数为x=60+3=63人,
故答案为:63.
【点睛】
此题考查了三元一次方程组的应用,倍数的确定,正确理解题意得到队列人数为30的倍数是解题的关键.
3、-3
【解析】
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.21世纪教育网版权所有
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.
4、
【解析】
【分析】
设该店有客房x间,房客y人;根据一房七客多七客,一房九客一房空得出方程组即可.
【详解】
解:设该店有客房x间,房客y人;
根据题意得:,
故答案为:.
【点睛】
本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21教育名师原创作品
5、相等
【解析】
略
三、解答题
1、,
【解析】
【分析】
根据方程的解的定义可得,然后求出方程组的解,即可求解.
【详解】
解:∵和都是方程ax﹣y=b的解,
∴,
由①+②,得:,
把代入①,得:,
所以原方程组的解为.
【点睛】
本题主要考查了方程的解,解二元一次方程组,熟练掌握解二元一次方程组的方法——加减消元法,代入消元法是解题的关键.
2、 (1)容量为的移动盘的销售数量为6只,容量为的移动盘的销售数量为10只;
(2)容量为的移动盘的销售单价是80元.
【解析】
【分析】
(1)设容量为的移动盘的销售数量为x只,容量为的移动盘的销售数量为y只,根据题意列出二元一次方程组求解即可得;
(2)设容量为的移动盘的销售单价是m元,则容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,根据题意列出一元一次方程求解即可得.
(1)
设容量为的移动盘的销售数量为x只,容量为的移动盘的销售数量为y只,
依题意得:,
解得:.
答:容量为的移动盘的销售数量为6只,容量为的移动盘的销售数量为10只.
(2)
设容量为的移动盘的销售单价是m元,则容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,【出处:21教育名师】
依题意得:,
解得:.
答:容量为的移动盘的销售单价是80元.
【点睛】
题目主要考查二元一次方程组及一元一次方程的应用,理解题意,列出方程是解题关键.
3、
【解析】
【分析】
根据加减消元法解二元一次方程组即可.①﹣②求出x=3,把x=3代入②得出3+y=2,再求出y即可.
【详解】
解:,
①﹣②,得x=3,
把x=3代入②,得3+y=2,
解得:y=﹣1,
所以方程组的解是.
【点睛】
本题考查了加减消元法解二元一次方程组,掌握加减消元法是解题的关键.
4、 (1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;
(2)a=10.
【解析】
【分析】
(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组,解方程组即可;21教育网
(2)根据开心果涨价后销售价 ( http: / / www.21cnjy.com )格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.
(1)
解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克
根据题意,得,
解得,
答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;
(2)
解:,
整理得76500+1440a=90900,
解得:a=10,
经检验a=10是原方程的根,并符合题意.
【点睛】
本题考查列二元一次方程组 ( http: / / www.21cnjy.com )解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.
5、 (1)45道
(2)46道
【解析】
【分析】
(1)设她答对了x道题,根据总得分=2×答对题目数-1×答错题目数,即可得出关于x的一元一次方程,解之即可得出结论;www.21-cn-jy.com
(2)设她答对了y道题,z道题不答,根据题意列出方程,求出整数解即可.
【小题1】
解:设她答对了x道题,则答错了(50-1-x)道题,
依题意得:,
解得:,
∴她答对了45道题;
【小题2】
设她答对了y道题,z道题不答,
依题意得:,
∴,
∴,
当z=1时,y=,舍去;
当z=2时,y=46,
∴她答对了46道题,才能正好符合评奖的最低控制分数.
【点睛】
本题考查了一元一次方程的应用以及二元一次方程的应用,解题的关键是理解得分规则,找准等量关系,正确列出方程.21cnjy.com
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)