2022-2023学年苏科版九年级数学上册《2.2圆的对称性》同步练习题(附答案)
一.选择题
1.已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有( )
A.4个 B.3个 C.2个 D.1个
2.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,﹣1),则线段AB的长度为( )
A.3 B.4 C.6 D.8
3.如图,以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为( )
A.4 B.6 C.8 D.10
4.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为( )
A.1 B.2 C.3 D.4
5.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )
A.AD=BD B.OC=2CD C.∠CAD=∠CBD D.∠OCA=∠OCB
二.填空题
6.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是 .
7.如图,AB为⊙O的直径,弦CD⊥AB于点F,OE⊥AC于点E,若OE=3,OB=5,则CD的长度是 .
8.已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为 .
9.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长为 cm.
10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为 .
11.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为 cm.
12.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 .
13.一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为 .
14.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 m.
15.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为 cm.
三.解答题
16.如图,在⊙O中,直径为MN,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,若AB=1.
(1)求OD的长;
(2)求⊙O的半径.
17.已知⊙O的直径为10,AB、CD是两条平行的弦,且AB=6、CD=8,求AB、CD之间的距离.
18.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.
(1)求作此残片所在的圆(不写作法,保留作图痕迹).
(2)求残片所在圆的面积.
19.如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.
(1)用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)
(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.
20.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:
(1)桥拱半径
(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?
21.如图是一个装有水的水管的截面,已知水管的直径是100cm,装有水的液面宽度为AB=60cm,CD为过圆心且CD⊥AB,则水管中水的最大深度为多少?
参考答案
一.选择题
1.解:过O点作OC⊥AB,交⊙O于P,如图,
∴OC=3,
而OA=5,
∴PC=2,即点P到直线AB的距离为2;
在直线的另一边,圆上的点到直线的最远距离为8,而圆为对称图形,
∴在直线AB的这边,还有两个点M,N到直线AB的距离为2.
故选:B.
2.解:连接EB,如图所示:
∵C(0,9),D(0,﹣1),
∴OD=1,OC=9,
∴CD=10,
∴EB=ED=CD=5,OE=5﹣1=4,
∵AB⊥CD,
∴AO=BO=AB,OB===3,
∴AB=2OB=6;
故选:C.
3.解:连接OA,如图,设⊙O的半径为r,则OA=r,OM=16﹣r,
∵AB⊥CD,
∴AM=BM=AB=8,
在Rt△AOM中,82+(16﹣r)2=r2,解得r=10,
∴MD=CD﹣CM=20﹣16=4.
故选:A.
4.解:∵⊙O的半径为5,弦AB=8,点C是AB的中点,
∴OC⊥AB,AC=BC=4,OA=5,
∴OC===3,
故选:C.
5.解:OC=2CD.理由如下:
∵在⊙O中,AB是弦,半径OC⊥AB,
∴AD=DB,
∵OC=2CD,
∴AD=BD,DO=CD,AB⊥CO,
∴四边形OACB为菱形.
故选:B.
二.填空题
6.解:如图:连接OA,作OM⊥AB与M,
∵⊙O的直径为10,
∴半径为5,
∴OP的最大值为5,
∵OM⊥AB与M,
∴AM=BM,
∵AB=8,
∴AM=4,
在Rt△AOM中,OM=,
OM的长即为OP的最小值,
∴3≤OP≤5.
7.解:∵OE⊥AC,
∴AE=EC,
∵AB⊥CD,
∴∠AFC=∠AEO=90°,
∵OE=3,OB=5,
∴AE===4,
∴AC=8,
∵∠A=∠A,∠AEO=∠AFC,
∴FC=,
∵CD⊥AB,
∴CD=2CF=,
故答案为:.
8.解:两条平行弦在圆心的同侧时,则两条平行弦间的距离=3﹣2=1;
当两条平行弦在圆心的两侧时,则两条平行弦间的距离=3+2=5.
故答案为1或5.
9.解:如图,∵AB=6cm,CD=4cm,
∴由垂径定理OC=3cm,CM=2cm,
∴由勾股定理得OM===cm,
故答案为.
10.解:如图所示,连接OD.
∵弦CD⊥AB,AB为圆O的直径,
∴E为CD的中点,
又∵CD=16,
∴CE=DE=CD=8,
又∵OD=AB=10,
∵CD⊥AB,
∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根据勾股定理得:OE2+DE2=OD2,
∴OE==6,
则OE的长度为6.
11.解:连接OC,
设AP=x,则PB=5x,
∴OP=3x﹣x=2x.
∵CD⊥AB,∴PC=CD=×10=5.
在Rt△PCO中,OC2﹣OP2=PC2,
∴(3x)2﹣(2x)2=52,
∴x=,∴⊙O的半径为3cm.
12.解:作OD⊥AB于D,连接OA.
∵OD⊥AB,OA=2,OD=1,
在Rt△OAD中
AD===,
∴AB=2AD=2.
故答案为:2.
13.解:连接OA,OD,
∵点A,B,C在⊙O上,CD垂直平分AB于点D.AB=8dm,DC=2dm,
∴AD=4dm,
设圆形标志牌的半径为r,可得:r2=42+(r﹣2)2,
解得:r=5,
故答案为:5dm.
14.解:如图:连接OC,过O作OE⊥AB于E,交CD于F,
∵AB=1.2m,OE⊥AB,OA=1m,
∴OE=0.8m,
∵水管水面上升了0.2m,
∴OF=0.8﹣0.2=0.6m,
∴CF=m,
∴CD=1.6m.
故答案为:1.6.
15.解:如图所示:过点O作OD⊥AB于点D,连接OA,
∵OD⊥AB,
∴AD=AB=×8=4cm,
设OA=r,则OD=r﹣2,
在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,
解得r=5cm.
∴该输水管的半径为5cm;
故答案为:5.
三.解答题
16.解:(1)如图,
∵四边形ABCD 为正方形,
∴DC=BC=AB=1,∠DCO=∠ABC=90°,
∵∠POM=45°,
∴CO=DC=1,
∴OD=CO==;
(2)BO=BC+CO=BC+CD=1+1=2,
连接AO,
则△ABO 为直角三角形,
于是 AO=.
即⊙O的半径为.
17.解:∵⊙O的直径为10,
∴⊙O的半径为5,
分为两种情况:①如图1,过O作EF⊥CD于E,交AB于F,连接OC、OA、
∵AB∥CD,
∴EF⊥AB,
∵AB=6、CD=8,
∴由垂径定理得:CE=ED=CD=4,AF=BF=AB=3,
在Rt△OCE中,OC=5,CE=4,由勾股定理得:OE===3,
在Rt△OAF中,OC=5,AF=3,由勾股定理得:OF===4,
即两条平行弦AB与CD之间的距离是4﹣3=1;
②如图2,两条平行弦AB与CD之间的距离是3+4=7;
综合上述,两条平行弦AB与CD之间的距离是1或7.
18.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.
(2)连接OA,设OA=x,AD=12cm,OD=(x﹣8)cm,
则根据勾股定理列方程:
x2=122+(x﹣8)2,
解得:x=13.
即:圆的半径为13cm.
所以圆的面积为:π×132=169π(cm2).
19.解:(1)作法:分别作AB和AC的垂直平分线,设交点为O,则O为所求圆的圆心;
(2)连接AO、BO,AO交BC于E,
∵AB=AC,
∴AE⊥BC,
∴BE=BC=×8=4,
在Rt△ABE中,AE===3,
设⊙O的半径为R,在Rt△BEO中,
OB2=BE2+OE2,
即R2=42+(R﹣3)2,
R=,
答:圆片的半径R为cm.
20.解:(1)∵拱桥的跨度AB=16m,拱高CD=4m,
∴AD=8m,
利用勾股定理可得:
AO2﹣(OC﹣CD)2=8×8,
解得OA=10(m).
(2)设河水上涨到EF位置(如上图所示),
这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),
∴EM=EF=6m,
连接OE,则有OE=10m,
OM==8(m)
OD=OC﹣CD=10﹣4=6(m),
OM﹣OD=8﹣6=2(m).
21.解:连接OA,
根据题意得:CD⊥AB,
∴AD=AB=×60=30(cm),
∵水管的直径是100cm,
∴OA=50cm,
在Rt△AOD中,OD==40(cm),
∴CD=OC+OD=90(cm).
∴水管中水的最大深度为90cm.