5.牛顿运动定律的应用
INCLUDEPICTURE "../必备知识·梳理.TIF" \* MERGEFORMAT INCLUDEPICTURE "../必备知识·梳理.TIF" \* MERGEFORMAT
1.运动和力的桥梁是______________________。
2.思考:动力学的两类基本问题?
3.判断下列说法正确的是____________。
①物体的加速度方向就是其速度方向。
②同一个物体,其所受合外力越大,运动越快。
③同一个物体,其所受合外力越大,加速度越大。
④物体的运动状态的变化情况是由它的受力决定的。
⑤速度方向和合外力方向决定物体做加速还是减速运动。
INCLUDEPICTURE "../能力素养·进阶.TIF" \* MERGEFORMAT INCLUDEPICTURE "../能力素养·进阶.TIF" \* MERGEFORMAT
INCLUDEPICTURE "../基础巩固组.TIF" \* MERGEFORMAT INCLUDEPICTURE "../基础巩固组.TIF" \* MERGEFORMAT
1.A、B两物体以相同的初速度滑到同一粗糙水平面上,若两物体的质量mA>mB,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离xA与xB相比为( )
A.xA=xB B.xA>xB
C.xA<xB D.不能确定
2.某次无风的情况下,一雨滴在空中下落过程中的速度随时间变化的图像如图所示,则下列说法正确的是( )
A.雨滴下落过程中的加速度可能大于重力加速度
B.雨滴下落过程中的加速度方向发生了变化
C.当速度等于v0时,雨滴所受空气阻力等于重力
D.随着雨滴速度的增加,空气阻力逐渐减小
3.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力( )
A.方向向左,大小不变
B.方向向左,逐渐减小
C.方向向右,大小不变
D.方向向右,逐渐减小
4.如图所示,车沿水平地面做直线运动。一小球悬挂于车顶,悬线与竖直方向夹角为θ,放在车厢后壁上的物体A,质量为m,恰与车厢相对静止。已知物体A与车厢间动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。则下列关系式正确的是( )
A.tan θ=μ B.tan θ=
C.tan θ= D.tan θ=
5.皮带传送装置如图所示,皮带的速度v足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放到皮带的瞬间,滑块的速度为零,且弹簧正好处于自由长度,则当弹簧从自由长度到第一次达到最长这一过程中,滑块的速度和加速度变化的情况是( )
A.速度增大,加速度增大
B.速度增大,加速度减小
C.速度先增大后减小,加速度先增大后减小
D.速度先增大后减小,加速度先减小后增大
6.如图所示,弹簧的一端固定在天花板上,另一端连一质量m=2 kg的秤盘,盘内放一个质量M=1 kg的物体,秤盘在竖直向下的拉力F作用下保持静止,F=30 N,在突然撤去外力F的瞬间,物体对秤盘的压力大小为(g取10 m/s2)( )
A.10 N B.15 N
C.20 N D.40 N
7.在静止的小车内用细绳a和b系住一小球。绳a与竖直方向成θ角,拉力为Ta,绳b成水平状态,拉力为Tb。现让小车从静止开始向左做匀加速直线运动。此时小球在车内的位置仍保持不变(角θ不变)。则两根细绳的拉力变化情况是( )
A.Ta变大,Tb不变 B.Ta不变,Tb变大
C.Ta变大,Tb变大 D.Ta不变,Tb变小
8.橡皮筋弹弓夜光飞箭是一种常见的小玩具,它利用橡皮筋将飞箭弹射升空,再徐徐下落,如图(a)所示,其运动可简化为如下过程:飞箭以初速度v0竖直向上射出,在t2时刻恰好回到发射点,其速度随时间的变化关系如图(b)所示。则下列关于飞箭运动的描述正确的是( )
A.上升和下落过程运动时间相等
B.上升和下落过程中平均速度大小相等
C.0~t2过程中加速度先减小后增大
D.0~t2过程中所受阻力先减小后增大
9.如图所示,一质量m=0.6 kg的小物块,以v0=3 m/s 的初速度,在与斜面成α=37°角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m。已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=0.5。重力加速度g取10 m/s2。求:
(1)物块加速度的大小及到达B点时速度的大小;
(2)拉力F的大小。
INCLUDEPICTURE "../素养提升组.TIF" \* MERGEFORMAT INCLUDEPICTURE "../素养提升组.TIF" \* MERGEFORMAT
10.光滑水平面上,质量为4 kg的物体在水平推力F1的作用下由静止开始运动,0~2 s内的位移为6 m;质量为2.5 kg的物体在水平推力F2的作用下由静止开始运动,0~3 s内的位移为9 m。则F1与F2的比值为( )
A.1∶3 B.3∶4
C.12∶5 D.9∶8
11.如图所示,两个斜面aO、bO在地面上的投影与cO相等,已知斜面aO的倾角为α=60°,斜面bO的倾角为β=30°。现将两个完全相同的小物块(可视为质点)同时在a、b两点由静止释放,发现这两个小物块同时到达O点。若小物块与斜面aO之间的动摩擦因数为μ1=0.3,则小物块与斜面bO之间的动摩擦因数μ2为( )
A.0.6 B.0.4 C.0.3 D.0.1
12.(多选)如图所示,一小车上有一个固定的水平横杆,左边有一个固定轻杆与竖直方向成θ角,下端固定一小铁球,横杆右边用一根细线吊着一个与左边相同的小铁球。当小车向右做匀加速运动时,细线保持与竖直方向成α角,若θ>α,则下列说法正确的是( )
A.轻杆对小铁球的弹力方向与细线平行
B.轻杆对小铁球的弹力方向沿着轻杆方向向上
C.轻杆对小铁球的弹力方向既不与细线平行也不沿着轻杆方向
D.当小车匀速向右运动时α=0°
13.如图所示为两个等高的光滑斜面AB、AC,将一可视为质点的滑块由静止在A点释放。沿AB斜面运动,运动到B点时所用时间为tB;沿AC斜面运动,运动到C点所用时间为tC,则( )
A.tB=tC B.tB>tC
C.tB14.在倾角为θ的光滑固定斜面上有两个用轻弹簧连接的物块A和B,它们的质量分别为m和2m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态。现用一沿斜面方向的恒力F拉物块A使之沿斜面向上运动,当B刚离开C时,A的速度为v,加速度为a,且方向沿斜面向上。设弹簧始终处于弹性限度内,重力加速度为g,则( )
A.当B刚离开C时,A发生的位移大小为
B.恒力F的大小为F=3mg sin θ
C.当A的速度达到最大时,B的加速度大小为
D.从开始运动到B刚离开C时,所用的时间为
15.图甲中的塔吊是现代工地必不可少的建筑设备,图乙为150 kg的建筑材料被塔吊竖直向上提升过程的简化运动图像,g取10 m/s2,下列判断正确的是( )
A.前10 s钢索的拉力恒为1 500 N
B.46 s末材料离地面的距离为22 m
C.10~30 s钢索上的拉力最小
D.在30~36 s钢索最容易发生断裂
16.如图所示,倾角为θ=30°的光滑斜面上,质量分别为2m、m的a、b两物块,用一轻弹簧相连,将a用细线连接在木板上,调整细线使之与斜面平行且使系统静止时,物块b恰与斜面底端的挡板无弹力,此时弹簧的形变量为x。重力加速度为g,若突然剪断细线,弹簧始终处于弹性限度内,则( )
A.剪断细线瞬间,挡板对物块b弹力为0.5mg
B.剪断细线瞬间,物块b的加速度为0.5g
C.剪断细线瞬间,物块a的加速度为g
D.剪断细线后,物块a沿斜面向下运动3x时速度最大
17.(多选)如图甲为应用于机场和火车站的安全检查仪,其传送装置可简化为如图乙所示的模型。紧绷的传送带始终保持v=1 m/s的恒定速率运行,行李与传送带之间的动摩擦因数μ=0.2,A、B间的距离为L=6.25 m。旅客把行李(可视为质点)无初速度地放在A处,取g=10 m/s2,则下列说法正确的是( )
A.开始时行李的加速度大小为2 m/s2
B.行李经过2.5 s到达B处
C.行李在传送带上留下的摩擦痕迹长度为0.5 m
D.要使行李最快到达终点B,传递带的最小速度为5 m/s
18.如图甲所示,倾角为30°的粗糙斜面固定在地面上,物块在沿斜面方向的推力F的作用下向上运动。已知推力F在开始一段时间内大小为8.5 N。后来突然减为8 N,整个过程中物块速度随时间变化的规律如图乙所示,重力加速度g取10 m/s2,求:
(1)物块的质量m;
(2)物块与斜面间的动摩擦因数μ。
19.可爱的企鹅喜欢在冰面上玩游戏。如图所示,有一企鹅在倾角为37°的倾斜冰面上,先以加速度a=0.5 m/s2 从冰面底部由静止开始沿直线向上“奔跑”,t=8 s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变)。若企鹅肚皮与冰面间的动摩擦因数μ=0.25,已知sin37°=0.6,cos37°=0.8。g取10 m/s2,求:
(1)企鹅向上“奔跑”的位移大小;
(2)企鹅在冰面滑动的加速度大小;
(3)企鹅退滑到出发点时的速度大小。(计算结果可用根式表示)
5.牛顿运动定律的应用
必备知识 落实 INCLUDEPICTURE "../箭头.TIF" \* MERGEFORMAT INCLUDEPICTURE "../箭头.TIF" \* MERGEFORMAT
1.加速度
2.(1)从受力确定运动情况——如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。
(2)从运动情况确定受力——如果已知物体的运动情况,根据运动学规律求出物体的加速度,再根据牛顿第二定律求出力。
3.③④⑤
知能素养 进阶 INCLUDEPICTURE "../箭头.TIF" \* MERGEFORMAT INCLUDEPICTURE "../箭头.TIF" \* MERGEFORMAT
1. A、B物体的加速度均为a=μg,又由x= eq \f(v,2a) 知,初速度相同,两物体滑行距离也相同。
2. 雨滴下落过程中受向下的重力和向上的阻力作用,雨滴下落过程中受到重力和阻力作用做加速运动,合力向下说明阻力小于重力,所以下落过程中的加速度不可能大于重力加速度,故A错误;由题图可知,雨滴下落过程中的运动是加速度减小的加速运动,但是加速度方向没有发生变化,故B错误;当速度等于v0时,加速度为0,雨滴所受合力为0,空气阻力等于重力,故C正确;由题图可知,雨滴下落过程中的加速度减小,说明合力逐渐减小,空气阻力逐渐增大,故D错误。
3. A、B两物块叠放在一起共同向右做匀减速直线运动,对A和B整体根据牛顿第二定律有a==μg,然后隔离B,根据牛顿第二定律有:fAB=mBa=μmBg,大小不变;物块B做速度方向向右的匀减速运动,故而加速度方向向左,摩擦力向左,故选A。
4. 小球所受的合力应水平向右,则加速度a===g tan θ,A与小球具有相同的加速度,则A所受的弹力N=ma=mg tan θ,方向向右。由滑动摩擦力公式可知,f=μN=mg;
联立解得:tan θ=。
5. 滑块在水平方向受向左的滑动摩擦力Ff和弹簧向右的拉力kx,合力F合=Ff-kx=ma,而x逐渐增大,所以加速度a先减小后反向增大,速度先增大后减小。故D正确,A、B、C错误。
6. 当突然撤去外力F的瞬间,物体和秤盘所受的合外力大小F合=F=30 N,方向竖直向上,对物体和秤盘整体,由牛顿第二定律可得a== m/s2=10 m/s2
对物体由牛顿第二定律有FN-Mg=Ma
则FN=20 N
由牛顿第三定律可知,物体对秤盘的压力F′N=FN=20 N,故选C。
7. 小车以加速度a向左做匀加速直线运动,对小球受力分析,如图
Tb-Ta sin θ=ma
Ta cos θ-mg=0
解得Ta=
Tb=mg tan θ+ma
故当小车由静止开始加速时,加速度由零变为不是零,即变大,故Ta不变,Tb变大。
8. 0~t1时间为上升过程,t1~t2时间为下落过程,由题图可知(t2-t1)>(t1-0),上升和下落过程运动时间不相等,A错误;
上升和下落过程中,位移大小相等,但所用时间不等,故平均速度的大小不相等,B错误;
v?t图像的斜率表示加速度,根据图像可知,0~t2过程中加速度一直减小,C错误;
根据牛顿第二定律,结合图像可知,0~t1过程中mg+f=ma1,物体向上运动加速度减小,故阻力减小;t1~t2过程中mg-f=ma2,物体向下运动加速度减小,故阻力增大,综上所述:0~t2过程中所受阻力先减小后增大,D正确。
9.【解析】(1)设物块加速度的大小为a,到达B点时速度的大小为v,由运动学公式,得
L=v0t+at2,①
v=v0+at,②
代入数据,联立解得:a=2 m/s2,v=7 m/s。
(2)设物块所受支持力为FN,所受摩擦力为f,受力分析如图所示,
由牛顿第二定律,得
F cos α-mg sin θ-f=ma,
F sin α+FN-mg cos θ=0,
又f=μFN,联立解得F≈6.18 N。
答案:(1)2 m/s2 7 m/s (2)6.18 N
10. 物体做初速度为零的匀加速直线运动,由匀变速直线运动的位移公式可知,加速度为:a1= eq \f(2x1,t) = m/s2=3 m/s2,a2= eq \f(2x2,t) = m/s2=2 m/s2,由牛顿第二定律得:F1=m1a1=4×3 N=12 N,F2=m2a2=2.5×2 N=5 N,两力之比:F1∶F2=12∶5,C正确。
11. 设c点与O点间的距离为L,小物块的质量为m,斜面倾角为θ,由牛顿第二定律,有mg sin θ-μmg cos θ=ma
由运动学规律,有=at2
根据题意可得=
代入数据解得μ2=0.1
故A、B、C错误,D正确。
12. 右边小球受重力和拉力两个力,产生的加速度水平向右,根据牛顿第二定律有a==g tan α
则左边的小球的加速度a=g tan α
知轻杆的弹力方向与细线方向平行,故A正确,B、C错误; 当小车做匀速直线运动时,右边拉小球的细线方向为竖直方向,即α=0°,故D正确。
13. 设斜面倾角为θ,对滑块利用牛顿第二定律解得加速度a=g sin θ,由几何关系知位移x=,根据x=at2得t===,故tB<tC,故C正确。
14. 开始A处于静止状态,弹簧处于压缩状态,根据平衡条件有:mg sin θ=kx1,解得弹簧的压缩量x1=,当B刚离开C时,B对挡板的弹力为零,有:kx2=2mg sin θ,解得弹簧的伸长量x2=,可知从静止到B刚离开C的过程中,A发生的位移x=x1+x2=,故A错误;根据牛顿第二定律得,F-mg sin θ-kx2=ma,解得:F=3mg sin θ+ma,故B错误;当A的加速度为零时,A的速度最大,设此时弹簧的拉力为FT,则:F-FT-mg sin θ=0,所以FT=F-mg sin θ=3mg sin θ+ma-mg sin θ=2mg sin θ+ma。以B为研究对象,则:2ma′=FT-2mg sin θ=ma,所以:a′=a,故C正确。若A一直做匀加速直线运动,则从开始运动到B离开C的时间:t==。而实际的情况是开始时A受到的向上的弹簧的弹力比较大,随A向上运动的过程中弹簧对A的弹力减小,所以A向上运动的加速度减小,可知在B离开C前A的加速度一直大于a,所以从开始运动到B刚离开C时,所用的时间一定小于,故D错误。
15. 由题图可知前10 s内材料的加速度a=0.1 m/s2,由F-mg=ma可解得钢索的拉力为1 515 N,选项A错误;由图像面积可得整个过程材料上升的高度是28 m,下降的高度为6 m,46 s末材料离地面的距离为22 m,选项B正确;因30~36 s材料加速度向下,材料处于失重状态,F16. 突然剪断细线前,对b受力分析,由平衡条件可得F弹=mg sin θ,剪断细线瞬间,弹簧的弹力不能突变,b的受力状态不变,合力仍为零,则物块b的加速度为零,挡板对物块b的弹力也为零,A、B错误;突然剪断细线前,对a受力分析,由平衡条件可得FT=2mg sin θ+F弹可得FT=3mg sin θ,剪断细线瞬间,弹簧的弹力不能突变,细线拉力消失,由牛顿第二定律得
2mg sin θ+F弹=2ma,解得a的加速度为
a=g sin θ,C错误;剪断细线前,弹簧的形变量为x,可得mg sin θ=F弹=kx
剪断细线后,物块a沿斜面向下运动,向下运动x时,弹簧恢复原长,再向下运动x′时,加速度为零,速度最大,此时满足2mg sin θ=kx′
联立上式可得x′=2x,所以物块a沿斜面向下运动3x时速度最大,D正确。
17. 根据牛顿第二定律得,μmg=ma,开始时行李的加速度大小为a=2 m/s2,A正确;加速运动的时间为t1==0.5 s,运动的距离为x1=at=0.25 m
匀速运动的时间为t2==6 s
总时间为t=t1+t2=6.5 s
行李经过6.5 s到达B处,B错误;行李在传送带上留下的摩擦痕迹长度为Δx=vt1-x1=0.25 m,C错误;行李一直加速时最快到达终点B
L=,解得v′=5 m/s,D正确。
18.【解析】(1)当F=8.5 N时物块做匀加速运动
由v t图像得a==0.5 m/s2
由牛顿第二定律得F-Ff-mg sin α=ma
当F′=8 N时,物块做匀速运动F′-Ff-mg sin α=0
由以上各式解得m=1 kg
(2)由第(1)问可得
Ff=F′-mg sin α=3 N,又Ff=μmgcos30°
得μ==
答案:(1)1 kg (2)
19.【解析】(1)在企鹅向上奔跑过程中:
x=at2,解得x=16 m。
(2)在企鹅卧倒以后将进行两个过程的运动,第一个过程从卧倒到最高点做匀减速运动,第二个过程是从最高点匀加速滑到最低点,两次过程根据牛顿第二定律分别有:
mgsin37°+μmgcos37°=ma1,
mgsin37°-μmgcos37°=ma2,
解得a1=8 m/s2,a2=4 m/s2。
(3)上滑位移x1==1 m
设退滑到出发点的速度为v,
则v2=2a2(x+x1),
解得v=2 m/s。
答案:(1)16 m
(2)上滑过程8 m/s2,下滑过程4 m/s2
(3)2 m/s
1