中小学教育资源及组卷应用平台
3.1.2 等式的性质 导学案
课题 3.1.2 等式的性质 单元 第3单元 学科 数学 年级 七年级(上)
教材分析 理解并能用语言表述等式的性质,能用等式的性质解方程.
核心素养分析 利用天平,通过观察、分析得出等式的两条性质。通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性.培养学生观察、分析、概括及逻辑思维能力.
学习目标 1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.
重点 理解和应用等式的性质.
难点 应用等式的性质把简单的一元一次方程化成“x=a”.
教学过程
课前预学 引入思考你能观察方程4x=24, x+1=3的解吗?x=6 x=2你还能观察方程2x+4(x+3)=3x-(x-27)的解吗? x=?仅靠观察来解比较复杂的方程是困难的.为了讨论解方程,我们先来看看等式有什么性质.下面我们来看这三个式子:(1)m+n=n+m、(2)3x-2x=x、(3)3x+1=5y它们都是用等号把两个式子连接起来像这样用 叫等式,在每一个式子当中等号左边的式子叫等号左边,右边的式子叫等号右边,我们通常用a=b表示一般的等式下面我们一起来学习等式的性质吧!探索等式的性质1把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码,则等式成立就可看作是天平保持两边平衡(让学生认识和了解天平)活动1、观看动态视频(教师展示),让学生感受并得出等式的规律:①a =b ②a =b 活动2、通过下列计算你能验证上述规律吗?(1)3+4=7 (2)3+4=73+4+2 7+2 3+4+2x_ _7+2x 3+4-5 7-5 3+4-5x_ _7-5x 通过活动1、活动2、我们能得出:●等式的性质1:等式两边加(或减)_______________,结果仍相等。如果a=b,那么a±c=b±c.(注意:这里的可代表一个数、可代表一个整式)探究等式性质2活动3、(动态演示,详见ppt)①在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡,可以得到 ②在两个托盘中放入等质量的木块各两块,观察此时天平是否平衡.可以得到 ③在两个托盘中放入等质量的木块各三块,观察此时天平是否平衡,可以得到 ④在两个托盘中放入等质量的木块各c块,观察此时天平是否平衡,可以得到 ⑤通过图片展示: 由a=b得到_________ 由a=b得到_____________ 即等号两边同时除以3 即等号两边同时除以c思考:这其中包含的数学道理是什么?学生讨论后交流.然后师生共同得出:●等式性质2:等式两边乘同一个数,或除以同一个________的数,结果仍相等.如果a=b,那么ac=bc或者=(c≠0).
新知讲解 提炼概念利用等式的性质解简单的一元一次方程的方法1.用等式的性质1化去方程等号左边的常数.2.用等式的性质2把方程左边未知数的系数化为1,最终转化为x=a(常数)的形式.3.当未知数的系数是分数时,一般两边同乘未知数系数的倒数.典例精讲 例:利用等式性质解下列方程:(1)x+7=26; (2)-5x=20; (3)-x-5=4. 注意:让学生领会解方程的实际就是把方程化为“x=a”的形式(1)解:根据等式性质____,两边同______,得 解:根据等式性质____,两边都除以____,得(3)解:根据等式性质______,两边都加上_____,得 再根据等式性质____,两边同除以-(即乘以-3),得请同学们自己代入原方程检验;注意:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.
课堂练习 巩固训练1.下列变形,正确的是( ) A.如果a=b,那么 B.如果 ,那么a=b C.如果a2=3a,那么a=3 D.如果 -1=x,那么2x+1-1=3x2.等式2x-y=10变形为-4x+2y=-20的依据为( )A.等式基本性质1 B.等式基本性质2C.分数的基本性质 D.乘法分配律3.已知x=y,下列各式:3x=3y,-2x=-2y, =1, =1其中正确的有( ) A.1个 B.2个 C.3个 D.4个 4、利用等式性质解下列方程:(1)x-5 = 6 (2) 0.3x = 15(3)2 - x = 3 5. 根据等式的性质,小红得到以下一个结论,你知道她错在哪里吗? 等式 3a+b-2=7a+b-2,其过程如下: 两边加2,得 3a+b=7a+b. 两边减b,得 3a=7a.两边除以a,得 3=7.6. 一个两位数个位上的数是1,十位上的数是x,把1与x对调,新两位数比原两位数小18,试列出关于x的方程,并解这个方程. 答案引入思考探索等式的性质1把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码,则等式成立就可看作是天平保持两边平衡(让学生认识和了解天平)活动1、观看动态视频(教师展示),让学生感受并得出等式的规律:①a+c=b+c ②a-c=b-c 活动2、通过下列计算你能发现什么规律(1)3+4=7 (2)3+4=73+4+2 = 7+2 3+4+2x_=_7+2x 3+4-5 = 7-5 3+4-5x_=_7-5x 通过活动1、活动2、我们能得出:●等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。如果a=b,那么a±c=b±c.(注意:这里的c课代表一个数、可代表一个整式)探究等式性质2活动3、(动态演示,详见ppt)①在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡,可以得到a=b②在两个托盘中放入等质量的木块各两块,观察此时天平是否平衡.可以得到2a=2b③在两个托盘中放入等质量的木块各三块,观察此时天平是否平衡,可以得到3a=3b④在两个托盘中放入等质量的木块各c块,观察此时天平是否平衡,可以得到ca=cb⑤通过图片展示: 由a=b得到 由a=b得到 即等号两边同时除以3 即等号两边同时除以c思考:这其中包含的数学道理是什么?学生讨论后交流.然后师生共同得出:●等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=b或者=(c≠0).提炼概念 典例精讲 例:利用等式性质解下列方程:(1)x+7=26; (2)-5x=20; (3)-x-5=4. 注意:让学生领会解方程的实际就是把方程化为“x=a”的形式解:(1)根据等式性质____,两边同______,得: (2)分析:-5x=20中-5x表示-5乘x,其中-5是这个式子-5x的系数,式子x的系数为1,-x的系数为-1,如何把方程-5x=20转化为x=a形式呢?即把-5x的系数变为1,应把方程两边同除以______.解:根据等式性质____,两边都除以____,得HYPERLINK "http://www./" EMBED Equation.DSMT4 于是x=_____(3)分析:方程-x-5=4的左边的-5要去掉,同时还要把-x的系数化为1,如何去掉-5呢?根据两个互为相反数的和为______,所以应把方程两边都加上____ 。 解:根据等式性质______,两边都加上_____,得 -x-5+5=4+5 化简,得-x=9 再根据等式性质____,两边同除以-(即乘以-3),得-x·(-3)=9×(-3)于是 x=-27 巩固训练1.B2.B3. C4.(1)解:两边都加5,得: x-5+5=6+5 x=11(2)解:两边都除以0.3 ,得 0.3x÷0.3=15÷0.3 x=50(3)解:两边都减2,得 两边乘-4,得 x=-45.解:a的值为0,而等式的性质2是除以同一个不为0的数,结果才相等.6.解:依题意可得:10x+1-(10+x) = 18,9x-9 = 18, 9x = 27, x = 3.
课堂小结
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)