【精品解析】沪教版(上海)九下 第二十七章 圆与正多边形同步测试练习题(含解析)

文档属性

名称 【精品解析】沪教版(上海)九下 第二十七章 圆与正多边形同步测试练习题(含解析)
格式 doc
文件大小 2.9MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-19 08:42:25

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
2、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )
A.不变 B.面积扩大为原来的3倍
C.面积扩大为原来的9倍 D.面积缩小为原来的
3、下列叙述正确的有( )个.
(1)随着的增大而增大;
(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
(5)以为三边长度的三角形,不是直角三角形.
A.0 B.1 C.2 D.3
4、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )
( http: / / www.21cnjy.com / )
A.3 B.2 C.1 D.
5、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )21·cn·jy·com
( http: / / www.21cnjy.com / )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
6、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
7、如图,是的直径,、是上的两点,若,则( )
( http: / / www.21cnjy.com / )
A.15° B.20° C.25° D.30°
8、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是(  )
A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
9、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )
A.0 B.1 C.2 D.无法确定
10、下列说法正确的是( )
A.等弧所对的圆周角相等 B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等 D.过弦的中点的直线必过圆心
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一块直角三角板的30°角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为______.www.21-cn-jy.com
2、如图,正方形ABCD的边长为1,⊙ ( http: / / www.21cnjy.com )O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:www-2-1-cnjy-com
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).2-1-c-n-j-y
( http: / / www.21cnjy.com / )
3、如图,在平面直角坐标系中,点,,的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_______.【出处:21教育名师】
( http: / / www.21cnjy.com / )
4、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.
5、一个扇形的面积是3πcm2,圆心角是60°,则此扇形的半径是______cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,四边形ABCD内接⊙O,∠C=∠B.
( http: / / www.21cnjy.com / )
(1)如图1,求证:AB=CD;
(2)如图2,连接BO并延长分别交⊙O和CD于点F、E,若CD=EB,CD⊥EB,求tan∠CBF;
(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交⊙O于点I,交AB于H,EF∶BG=1∶3,EG=2,求GH的长.
2、在平面直角坐标系xOy中,图形W上任意两 ( http: / / www.21cnjy.com )点间的距离有最大值,将这个最大值记为d.对点P及图形W给出如下定义:点Q为图形W上任意一点,若P,Q两点间的距离有最大值,且最大值恰好为2d,则称点P为图形W的“倍点”.
(1)如图1,图形W是半径为1的⊙O.
①图形W上任意两点间的距离的最大值d为_________;
②在点(0,2) ,(3,3),(,0)中,⊙O的“倍点”是________;
(2)如图2,图形W是中心在原点的正方形ABCD,已知点A(,1),若点E(,3) 是正方形ABCD的“倍点”,求的值;
(3)图形W是长为2的线段MN,T为MN的中点,若在半径为6的⊙O上存在MN的“倍点”,直接写出满足条件的点T所构成的图形的面积.
( http: / / www.21cnjy.com / )
3、下面是“过圆外一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O外一点P.
求作:过点P的⊙O的切线.作法:如图,
( http: / / www.21cnjy.com / )
(1)连接OP;
(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
(3)作直线MN,交OP于点C;
(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线
( http: / / www.21cnjy.com / )
完成如下证明:
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上
∴∠OAP=90°(___________)(填推理的依据).
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(___________)(填推理的依据).
同理可证直线PB是⊙O的切线.
4、如图,已知P是⊙O上一点,用两种不同的方法过点P作⊙O的一条切线.
要求:用直尺和圆规作图.
( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
5、新定义:在一个四边形 ( http: / / www.21cnjy.com )中,若有一组对角都等于90°,则称这个四边形为双直角四边形.如图1,在四边形ABCD中,∠A=∠C=90°,那么四边形ABCD就是双直角四边形.
(1)若四边形ABCD是双直角四边形,且AB=3,BC=4,CD=2,求AD的长;
(2)已知,在图2中,四边形ABCD内接与⊙O,BC=CD且∠BAC=45°;
①求证:四边形ABCD是双直角四边形;
②若AB=AC,AD=1,求AB的长和四边形ABCD的面积.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
( http: / / www.21cnjy.com / )
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,

∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
2、A
【分析】
设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.
【详解】
设原来扇形的半径为r,圆心角为n,
∴原来扇形的面积为,
∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,
∴变化后的扇形的半径为3r,圆心角为,
∴变化后的扇形的面积为,
∴扇形的面积不变.
故选:A.
【点睛】
本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.
3、D
【分析】
根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
【详解】
当或者时,随着的增大而增大,故(1)不正确;
如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
∵圆的直径所对的圆周角为直角
∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


∴以为三边长度的三角形,是直角三角形,故(5)错误;
故选:D.
【点睛】
本题考查了三角形、垂直平分线、反比例 ( http: / / www.21cnjy.com )函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
4、B
【分析】
连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
【详解】
解:连接OC,如图
( http: / / www.21cnjy.com / )
∵AB 为⊙O 的直径,CDAB,垂足为点 E,CD=8,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
5、C
【分析】
由题意根据函数解析式求得A(- ( http: / / www.21cnjy.com )4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
( http: / / www.21cnjy.com / )
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.2·1·c·n·j·y
6、D
【分析】
根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【来源:21·世纪·教育·网】
【详解】
解:设AB与CD交于点E,
∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,
( http: / / www.21cnjy.com / )
∴CE=CD=,∠CEO=∠DEB=90°,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∴∠OCE=30°,
∴,
∴,
又∵,即
∴,
在△OCE和△BDE中,

∴△OCE≌△BDE(AAS),

∴阴影部分的面积S=S扇形COB=,
故选D.
【点睛】
本题考查了垂径定理、含30度角的直角三 ( http: / / www.21cnjy.com )角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
7、C
【分析】
根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
【详解】
解:∵∠BOC=130°,
∴∠BDC=∠BOC=65°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADC=90°-65°=25°,
故选:C.
【点睛】
本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
8、A
【分析】
根据数轴以及圆的半径可得当d=r时, ( http: / / www.21cnjy.com )⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可21教育名师原创作品
【详解】
解:∵圆心A在数轴上的坐标为3,圆的半径为2,
∴当d=r时,⊙A与数轴交于两点:1、5,
故当a=1、5时点B在⊙A上;
当d<r即当1<a<5时,点B在⊙A内;
当d>r即当a<1或a>5时,点B在⊙A外.
由以上结论可知选项B、C、D正确,选项A错误.
故选A.
【点睛】
本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
9、A
【分析】
圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.21*cnjy*com
【详解】
解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,
∴,
∴直线l与相离,
∴直线l与⊙O的公共点的个数为0,
故选A.
【点睛】
本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.21·世纪*教育网
10、A
【分析】
根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.
【详解】
解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;
B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;
C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;
D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.
故选A.
【点睛】
本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.
二、填空题
1、4
【分析】
连接OB、OC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.
【详解】
连接OB、OC,如图所示:
( http: / / www.21cnjy.com / )
∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△BOC是等边三角形,
∵,
∴,即⊙O的半径为4.
故答案为:4.
【点睛】
本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.
2、②③④
【分析】
根据切线的性质,正方形的性质 ( http: / / www.21cnjy.com ),通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.21*cnjy*com
【详解】
∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
∴∠CMH=90°,
∵四边形ABCD是正方形,
∴∠CMH=∠CDH=90°,
∵CM=CD,CH=CH,
∴△CMH≌△CDH,
∴HD=HM,∠HCM=∠HCD,
同理可证,∴GM=GB,∠GCB=∠GCM,
∴GB+DH=GH,无法确定HD=2BG,
故①错误;
∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
∴2∠HCM+2∠GCM=90°,
∴∠HCM+∠GCM=45°,
即∠GCH=45°,
故②正确;
( http: / / www.21cnjy.com / )
∵△CMH≌△CDH,BD是正方形的对角线,
∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
=∠DHF +∠HDF+∠HFD
=180°,
根据对角互补的四边形内接于圆,
∴H,F,E,G四点在同一个圆上,
故③正确;
∵正方形ABCD的边长为1,

=1
=,∠GAH=90°,AC=
取GH的中点P,连接PA,
∴GH=2PA,
∴=,
∴当PA取最小值时,有最大值,
连接PC,AC,
则PA+PC≥AC,
∴PA≥AC- PC,
∴当PC最大时,PA最小,
∵直径是圆中最大的弦,
∴PC=1时,PA最小,
∴当A,P,C三点共线时,且PC最大时,PA最小,
∴PA=-1,
∴最大值为:1-(-1)=2-,
∴四边形CGAH面积的最大值为2,
∴④正确;
故答案为: ②③④.
【点睛】
本题考查了切线的性质,直径是最大的弦,三角形 ( http: / / www.21cnjy.com )的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
3、(2,1)
【分析】
根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.
【详解】
解:根据垂径定理的推论:弦的垂直平分线必过圆心,
可以作弦AB和BC的垂直平分线,交点即为圆心.
如图所示,则圆心是(2,1).
故答案为(2,1).
( http: / / www.21cnjy.com / )
【点睛】
本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.
4、在⊙A上
【分析】
先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.
【详解】
解:∵点A的坐标为(4,3),
∴OA==5,
∵半径为5,
∴OA=r,
∴点O在⊙A上.
故答案为:在⊙A上.
【点睛】
本题考查了点与圆的位置关系:点与圆的位置关系 ( http: / / www.21cnjy.com )有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外 d>r;当点P在圆上 d=r;当点P在圆内 d<r.
5、
【分析】
设扇形的半径为再由扇形的面积公式列方程可得再解方程可得答案.
【详解】
解:设扇形的半径为

解得:,
故答案为:
【点睛】
本题考查的已知扇形的面积求解扇形的半径,熟记扇形的面积公式是解本题的关键.
三、解答题
1、(1)见解析;(2);(3)
【分析】
(1)过点D作DE∥AB交BC于E,由 ( http: / / www.21cnjy.com )圆内接四边形对角互补可以推出∠B+∠A=180°,证得AD∥BC,则四边形ABED是平行四边形,即可得到AB=DE,∠DEC=∠B=∠C,这DE=CD=AB;
(2)连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x,由垂径定理可得,∠CEB=∠CEF=∠FCB=90°,则∠FBC+∠F=∠FCE+∠F=90°,可得∠FBC=∠FCE;由勾股定理得,则,
解得,则;
(3)EF:BG=1:3,即则 解得,则,,,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,分别求出G点坐标为,C点坐标为;A点坐标为
然后求出直线CG的解析式为,直线AB的解析式为,即可得到H的坐标为(,),则.
【详解】
解:(1)如图所示,过点D作DE∥AB交BC于E,
∵四边形ABCD是圆O的圆内接四边形,
∴∠A+∠C=180°,
∵∠B=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE,∠DEC=∠B=∠C,
∴DE=CD=AB;
( http: / / www.21cnjy.com / )
(2)如图所示,连接OC,FC,
设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x
∵CD⊥EB,BF是圆O的直径,
∴,∠CEB=∠CEF=∠FCB=90°,
∴∠FBC+∠F=∠FCE+∠F=90°,
∴∠FBC=∠FCE;
∵,
∴,
∴,
解得,
∴;
( http: / / www.21cnjy.com / )
(3)∵EF:BG=1:3,即
∴ ,即
∴,
解得,
∴,
∴,,
如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,21世纪教育网版权所有
∴,
∴,,
∵,
∴,,
∴,,
∴,,
∴G点坐标为(,),C点坐标为(,0);
∵,
∴,
∵∠ABC=∠ECB,
∴,
∴,
∵,
∴,
∴,
∴,
∴A点坐标为(,)
设直线CG的解析式为,直线AB的解析式为,
∴,,
∴,,
∴直线CG的解析式为,直线AB的解析式为,
联立,
解得,
∴H的坐标为(,),
∴.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了圆内接四边形的性质,平 ( http: / / www.21cnjy.com )行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解.【版权所有:21教育】
2、(1)① 2;② ;(2)t的值为3或;(3)π
【分析】
(1)①根据定义解答即可;②分别找出的最大值,再根据定义判断即可;
(2) 如图所示,正方形ABCD上的任意两点间距离的最大值为.若点E(t,3)是正方形ABCD的“倍点”,则点E到ABCD上的点的最大距离恰好为. 分, 和【来源:21cnj*y.co*m】
分别讨论即可求解;
(3)分线段MN在内部和在外部两种情况讨论即可.
【详解】
(1)①圆上两点之间的最大距离是直径2,根据定义可知d= 2,
故答案为:2;
②由图可知,故不是图形W的“倍点”; ,故不是图形W的“倍点”;,当Q(1,0)时,=2d,故P为图形W的“倍点”;
故答案为:;
(2)如图所示,正方形ABCD上的任意两点间距离的最大值为.
( http: / / www.21cnjy.com / )
依题意,若点E(t,3)是正方形ABCD的“倍点”,则点E到ABCD上的点的最大距离恰好为.
当时,点E到ABCD上的点的最大距离为EC的长. 取点H(1,3),则CH⊥EH且CH=4,此时可求得EH=4,从而点E的坐标为,即;
当时,点E到ABCD上的点的最大距离为ED的长.由对称性可得点E的坐标为,即.
当时,显然不符合题意.
综上,t的值为3或.
(3)MN上d=2,2d=4,
当线段MN在内部时,T组成的图形为半径为4的圆,,
当线段MN在外部时,T组成的图形为半径为8的圆,,
故点T所构成的图形的面积为或.
【点睛】
此题考查考查了一次函数的性质,图形上两点间的“极大距离”等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.21cnjy.com
3、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线
【分析】
连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;
【详解】
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上,
∴∠OAP=90°(直径所对的圆周角是直角),
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),
同理可证直线PB是⊙O的切线,
故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.
( http: / / www.21cnjy.com / )
4、见详解
【分析】
方法一:连接OP,并延长,以点P为圆心 ( http: / / www.21cnjy.com ),OP长为半径画弧,交OP的延长线于点C,然后再以点O、C为圆心,大于OC长的一半为半径画弧,交于点M、N,则问题可求解;方法二:连接OP,以点P为圆心,OP长为半径画弧,交圆O于点D,连接OD并延长,然后以点D为圆心OD长为半径画弧,交OD的延长线于点E,连接PE,则问题可求解.
【详解】
解:方法一如图所示:
( http: / / www.21cnjy.com / )
直线MN即为⊙O的切线;
方法二如图所示:
( http: / / www.21cnjy.com / )
则PE即为⊙O的切线.
【点睛】
本题主要考查切线的性质,熟练掌握切线的性质是解题的关键.
5、(1);(2)①见解析;②
【分析】
(1)连接BD,运用勾股定理求出BD和AD即可;
(2)①连接OB,OC,OD,证明BD是的直径即可;②过点D作于点E,设圆的半径为R,由勾股定理求出AB,AD,BC,CD的长,再根据运用三角形面积公式求解即可.
【详解】
解:(1)连接BD,如图,
( http: / / www.21cnjy.com / )
在中,BC=4,CD=2,


在中,AB=3,BD=2 ,


(2)连接OB,OC,OD,如图,
( http: / / www.21cnjy.com / )


在和中
∴≌

∴O是线段BD的中点,
∴BD为的直径

∴四边形ABCD是双直角四边形;
(3)过点D作于点E,
( http: / / www.21cnjy.com / )


∴是等腰直角三角形
在中,,


设圆的半径为R,
∵和均为等腰直角三角形,

在中,
在中,
∵,

解得,

【点睛】
本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)