【强化训练】沪教版(上海)九下 第二十七章 圆与正多边形月考试卷(含解析)

文档属性

名称 【强化训练】沪教版(上海)九下 第二十七章 圆与正多边形月考试卷(含解析)
格式 doc
文件大小 2.3MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-22 08:38:22

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,正方形ABCD内接于⊙O,点P在上,则下列角中可确定大小的是(  )
( http: / / www.21cnjy.com / )
A.∠PCB B.∠PBC C.∠BPC D.∠PBA
2、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
( http: / / www.21cnjy.com / )
A.45° B.60° C.90° D.120°
3、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
4、计算半径为1,圆心角为的扇形面积为( )
A. B. C. D.
5、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
( http: / / www.21cnjy.com / )
A.4 B.6 C.8 D.10
6、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为(  )
( http: / / www.21cnjy.com / )
A.1个 B.2个 C.3个 D.4个
7、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是(  )
A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
8、如图,BD是⊙O的切线,∠BCE=30°,则∠D=(  )
( http: / / www.21cnjy.com / )
A.40° B.50° C.60° D.30°
9、如图,点A,B,C在⊙O上,∠ACB=37°,则∠AOB的度数是( )
( http: / / www.21cnjy.com / )
A.73° B.74° C.64° D.37°
10、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是( )21·cn·jy·com
( http: / / www.21cnjy.com / )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在⊙O中,AC=BD,若∠AOC=120°,则∠BOD=_____.
( http: / / www.21cnjy.com / )
2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
( http: / / www.21cnjy.com / )
3、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.2·1·c·n·j·y
( http: / / www.21cnjy.com / )
4、圆形角是270°的扇形的半径为4cm,则这个扇形的面积是______.
5、为了落实“双减”政策,朝阳区一 ( http: / / www.21cnjy.com )些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,内接于⊙O,且为⊙O的直径,交于点,在的延长线上取点,使得∠DCE=∠B.
( http: / / www.21cnjy.com / )
(1)求证:是⊙O的切线;
(2)若,,求AE的长.
2、如图,AB为的直径,点C,D在上,,.求证:DE是的切线.
( http: / / www.21cnjy.com / )
3、在平面直角坐标系中,的半径为1,点在上,点在内,给出如下定义:连接并延长交于点,若,则称点是点关于的倍特征点.【出处:21教育名师】
(1)如图,点的坐标为.
( http: / / www.21cnjy.com / )
①若点的坐标为,则点是点关于的_______倍特征点;
②在,,这三个点中,点_________是点关于的倍特征点;
③直线经过点,与轴交于点,.点在直线上,且点是点关于的倍特征点,求点的坐标;【版权所有:21教育】
(2)若当取某个值时,对于函数的图象上任意一点,在上都存在点,使得点是点关于的倍特征点,直接写出的最大值和最小值.
4、如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知.
( http: / / www.21cnjy.com / )
(1)求证:AD是⊙O的切线.
(2)若OB=2,∠CAD=30°,则的长为 .
5、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接等腰直角三角形ABC.
( http: / / www.21cnjy.com / )
作法:如图,
( http: / / www.21cnjy.com / )
①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
根据小明设计的尺规作图过程,解决下面的问题:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC= .
∵AB是直径,
∴∠ACB= ( ) (填写推理依据) .www.21-cn-jy.com
∴△ABC是等腰直角三角形.
-参考答案-
一、单选题
1、C
【分析】
由题意根据正方形的性质得到BC弧所对的圆心角为90°,则∠BOC=90°,然后根据圆周角定理进行分析求解.
【详解】
解:连接OB、OC,如图,
( http: / / www.21cnjy.com / )
∵正方形ABCD内接于⊙O,
∴所对的圆心角为90°,
∴∠BOC=90°,
∴∠BPC=∠BOC=45°.
故选:C.
【点睛】
本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90°是解题的关键.
2、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用 ( http: / / www.21cnjy.com ),圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
3、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
4、B
【分析】
直接根据扇形的面积公式计算即可.
【详解】
故选:B.
【点睛】
本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
5、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆 ( http: / / www.21cnjy.com )角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
6、C
【分析】
如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB DC=DE DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
【详解】
解:如图1,∵△ABC是等边三角形,
∴∠ABC=60°,
∵等边△ABC内接于⊙O,
∴∠ADC=∠ABC=60°,
故①正确;
∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
∴∠BDE=∠ADC,
又∠DBE=∠DAC,
∴△DBE∽△DAC,
∴,
∴DB DC=DE DA,
∵D是上任一点,
∴DB与DC不一定相等,
∴DB DC与DB2也不一定相等,
∴DB2与DE DA也不一定相等,
故②错误;
( http: / / www.21cnjy.com / )
如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠ABK=∠ACD,
∴AB=AC,
∴△ABK≌△ACD(SAS),
∴AK=AD,S△ABK=S△ACD,
∴DH=KH=DK,
( http: / / www.21cnjy.com / )
∵∠AHD=90°,∠ADH=60°,
∴∠DAH=30°,
∵AD=2,
∴DH=AD=1,
∴DK=2DH=2,,
∴S△ADK=,
∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
故③正确;
如图3,连接OA、OG、OC、GC,则OA=OG=OC,
∵CF切⊙O于点C,
∴CF⊥OC,
∵AF⊥CF,
∴AF∥OC,
∵∠AOC=2∠ABC=120°,
∴∠OAC=∠OCA=×(180°﹣120°)=30°,
∴∠CAG=∠OCA=30°,
∴∠COG=2∠CAG=60°,
∴∠AOG=60°,
∴△AOG和△COG都是等边三角形,
∴OA=OC=AG=CG=OG,
∴四边形OABC是菱形,
∴OA∥CG,
∴S△CAG=S△COG,
∴S阴影=S扇形COG,
∵∠OCF=90°,∠OCG=60°,
∴∠FCG=30°,
∵∠F=90°,
∴FG=CG,
∵FG2+CF2=CG2,CF=,
∴(CG)2+()2=CG2,
∴CG=4,
∴OC=CG=4,
∴S阴影=S扇形COG==,
故④正确,
∴①③④这3个结论正确,
故选C.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了等边三角形的性质与判定,圆 ( http: / / www.21cnjy.com )切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.21教育名师原创作品
7、A
【分析】
根据数轴以及圆的半径可得当d=r时, ( http: / / www.21cnjy.com )⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可
【详解】
解:∵圆心A在数轴上的坐标为3,圆的半径为2,
∴当d=r时,⊙A与数轴交于两点:1、5,
故当a=1、5时点B在⊙A上;
当d<r即当1<a<5时,点B在⊙A内;
当d>r即当a<1或a>5时,点B在⊙A外.
由以上结论可知选项B、C、D正确,选项A错误.
故选A.
【点睛】
本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
8、D
【分析】
连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
【详解】
解:连接
( http: / / www.21cnjy.com / )
BD是⊙O的切线
故选D
【点睛】
本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
9、B
【分析】
根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知∠AOB=2∠ACB=74°,即可得出答案.
【详解】
解:由图可知,
∠AOB在⊙O中为对应的圆周角,∠ACB在⊙O中为对应的圆心角,
故:∠AOB=2∠ACB=74°.
故答案为:B.
【点睛】
本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键.
10、B
【分析】
利用,得到∠BAC=∠DCA,根据同圆的半径相等,AC=AB=3,再利用勾股定理求解 可得tan∠ACD=,从而可得答案.
【详解】
解:如图, ∵,
∴∠BAC=∠DCA.
( http: / / www.21cnjy.com / )
∵同圆的半径相等, ∴AC=AB=3,而
在Rt△ACD中,tan∠ACD=.
∴tan∠BAC=tan∠ACD=.
故选B.
【点睛】
本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.
二、填空题
1、
【分析】
根据圆的性质,可得OA=OB,OC=OD,证明△AOC≌△BOD,即可得答案.
【详解】
解:由题意可知:OA=OB,OC=OD,
∵AC=BD,
∴△AOC≌△BOD,
∵∠AOC=120°,
∴∠BOD=120°,
故答案为:120°.
【点睛】
本题考查了圆的性质、三角形全等的判定和性质,做题的关键是证明△AOC≌△BOD.
2、3
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
( http: / / www.21cnjy.com / )
,分别为的切线,

为等腰三角形,


为等边三角形,



故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
3、##
【分析】
如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.21·世纪*教育网
【详解】
解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点
∵点C的坐标为(2,2),圆C与x轴相切于点A,
∴点A的坐标为(2,0),
∴OA=OD=2,即O是AD的中点,
又∵M是AB的中点,
∴OM是△ABD的中位线,
∴,
∴当BD最小时,OM也最小,
∴当B运动到时,BD有最小值,
∵C(2,2),D(-2,0),
∴,
∴,
∴,
故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了坐标与图形,一点到圆上一点的 ( http: / / www.21cnjy.com )距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.【来源:21·世纪·教育·网】
4、12π
【分析】
根据扇形的面积公式计算即可.
【详解】

=12π,
故答案为:12π.
【点睛】
本题考查了扇形的面积,熟记扇形面积公式是解题的关键.
5、
【分析】
如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.www-2-1-cnjy-com
【详解】
解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,
则OD⊥MN,
∴MD=DN,
在Rt△ODM中,OM=180cm,OD=60cm,
∴cm,
∴cm,
即该球在大圆内滑行的路径MN的长度为cm,
故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.
三、解答题
1、(1)证明见详解;(2)
【分析】
(1)连接OC,由等腰三角形的性质得出∠DCE=∠DEC,∠A=∠ACO,可得出∠DCE+∠ACO=90°,则可得出结论.21cnjy.com
(2)过点D作DF⊥CE于点F,由勾股定理求出AB=5,证明△AOE∽△ACB,得出比例线段,即可求出AE.21*cnjy*com
【详解】
(1)证明:连接OC,如图1,
( http: / / www.21cnjy.com / )
∵DC=DE,
∴∠DCE=∠DEC,
∵∠DEC=∠AEO,
∴∠DCE=∠AEO,
∵OA⊥OE,
∴∠A+∠AEO=90°,
∴∠DCE+∠A=90°,
∵OA=OC,
∴∠A=∠ACO,
∴∠DCE+∠ACO=90°,
∴OC⊥DC,
∴CD是⊙O的切线;
(2)如图2,过点D作DF⊥CE于点F,
( http: / / www.21cnjy.com / )
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACB=∠AOE,
∵AC=2,,
∴AB=,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴,
∴,
∴.
【点睛】
本题考查了等腰三角形的性质和判定, ( http: / / www.21cnjy.com )相似三角形的判定与性质,三角形内角和定理,切线的判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键.21*cnjy*com
2、见解析
【分析】
连接OD,根据已知条件得到,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论.
【详解】
证明:连接OD,
∵,
∴.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
∴.
∴.
∴DE是的切线.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了切线的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.
3、(1)①;②;③(,);(2)k的最小值为,k有最大值为.
【分析】
(1)①先求出AP,AB的长,然后根据题目的定义求解即可;
②先求出,,即可得到,假设点是点A关于⊙O的倍特征点,得到,则不符合题意,同理可以求出,假设点是点A关于⊙O的倍特征点,得到,可求出点F的坐标为(0,-1),由点的坐标为(,0),得到,则,则点不是点A关于⊙O的倍特征点;
③设直线AD交圆O于B,连接OE,过点E作EF⊥x轴于F,先求出E是AB的中点,从而推出∠EOA=30°,再求出,,即可得到点E的坐标为(,);
(2)如图所示,设直线与x轴,y轴的交点分别为C、D过点N作NP⊥CD交CD于P,交圆O于B,过点O作直线EF⊥CD交圆O于E,F即可得到,,由,可得,可以推出当的值越大,k的值越大,则当AM=BP,MN=NP时,k的值最小,即当A与E重合,N于F重合时,k的值最小,由此求出最小值即可求出最大值.
【详解】
解:(1)①∵A点坐标为(1,0),P点坐标为(,0),
∴,B点坐标为(-1,0),
∴,
∵,
∴,
故答案为:;
②∵的坐标为(0,),A点坐标为(1,0),
∴,,

假设点是点A关于⊙O的倍特征点,
∴,
∴不符合题意,
∴点不是点A关于⊙O的倍特征点,
同理可以求出,
假设点是点A关于⊙O的倍特征点,
∴,
∴即为AF的中点,
∴点F的坐标为(0,-1),
∵点F(0,-1)在圆上,
∴点是点A关于⊙O的倍特征点,
∵点的坐标为(,0),
∴,
∴,
∴点不是点A关于⊙O的倍特征点,
故答案为:;
( http: / / www.21cnjy.com / )
③如图所示,设直线AD交圆O于B,连接OE,过点E作EF⊥x轴于F,
∵点E是点A关于⊙O的倍的特征点,
∴,
∴E是AB的中点,
∴OE⊥AB,
∵∠EAO=60°,
∴∠EOA=30°,
∴,,
∴,
∴,
∴,
∴点E的坐标为(,);
( http: / / www.21cnjy.com / )
(2)如图所示,设直线与x轴,y轴的交点分别为C、D过点N作NP⊥CD交CD于P,交圆O于B,过点O作直线EF⊥CD交圆O于E,F2-1-c-n-j-y
∴,,
∵,
∴,
∴,
∵当k越大时,的值越小,
∴的值越大,
∴当的值越大,k的值越大,
∴当AM=BP,MN=NP时,k的值最小,
∴当A与E重合,N于F重合时,k的值最小,
∵C、D是直线与x轴,y轴的交点,
∴C(1,0),D点坐标为(0,1),
∴OC=OD=1,
∴,
∵OG⊥CD,
∴,
∴,
∴,
∴,
∴k的最小值为,
∴当N在E点,A在F点时,k有最大值为.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了坐标与图形,一次函数与坐标轴的交点问题,含30度角的直角三角形的性质,垂径定理等等,解题的关键在于能够正确理解题意进行求解.21世纪教育网版权所有
4、(1)见解析;(2).
【分析】
(1)连接OD,由OD=OB,利用等边对等角得到,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;【来源:21cnj*y.co*m】
(2)首先根据题意得到,进而求出的度数,然后利用扇形的弧长公式求解即可.
【详解】
(1)证明:连接,
( http: / / www.21cnjy.com / )




在中,,


则为圆的切线;
(2)∵∠CAD=30°,
∴由(1)可得,,
∴,
∵OB=2,
∴.
【点睛】
此题考查了切线的判定与性质,扇形的弧长公式,熟练掌握切线的判定与性质以及扇形的弧长公式是解本题的关键.
5、(1)见解析;(2)BC,90°,直径所对的圆周角是直角
【分析】
(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点C,D;连结AC、BC即可;
(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.
【详解】
(1)①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
( http: / / www.21cnjy.com / )
(2)证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC=BC.
∵AB是直径,
∴∠ACB=90°(直径所对的圆周角是直角) .
∴△ABC是等腰直角三角形.
故答案为:BC,90°,直径所对的圆周角是直角.
【点睛】
本题考查尺规作圆内接等腰直角三角形,圆周角定 ( http: / / www.21cnjy.com )理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)