【强化训练】沪教版(上海)九下 第二十七章 圆与正多边形同步训练试题(含解析)

文档属性

名称 【强化训练】沪教版(上海)九下 第二十七章 圆与正多边形同步训练试题(含解析)
格式 doc
文件大小 2.9MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-22 08:38:22

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个 ( http: / / www.21cnjy.com )题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【来源:21cnj*y.co*m】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )【版权所有:21教育】
( http: / / www.21cnjy.com / )
A. B. C. D.
2、如图,中的半径为1,内接于.若,,则的长是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
3、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
( http: / / www.21cnjy.com / )
A.19° B.38° C.52° D.76°
4、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是( )21cnjy.com
( http: / / www.21cnjy.com / )
A. B. C. D.
5、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
6、如图,中,,,点O是的内心.则等于( )
( http: / / www.21cnjy.com / )
A.124° B.118° C.112° D.62°
7、下列说法正确的是( )
A.等弧所对的圆周角相等 B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等 D.过弦的中点的直线必过圆心
8、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是(  )
( http: / / www.21cnjy.com / )
A.30° B.36° C.45° D.72°
9、下列叙述正确的有( )个.
(1)随着的增大而增大;
(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
(5)以为三边长度的三角形,不是直角三角形.
A.0 B.1 C.2 D.3
10、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一个扇形的半径为3,圆心角是120°,则它的面积是 _____.
2、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.
3、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________
( http: / / www.21cnjy.com / )
4、如图,点A、B、C、D、E在上,且弧AB为,则________.
( http: / / www.21cnjy.com / )
5、如图,在平面直角坐标系中,点,,的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_______.21*cnjy*com
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,△ABC为锐角三角形,AB=AC
求作:一点P,使得∠APC=∠BAC
作法:①以点A为圆心, AB长为半径画圆;
②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;
③连接DA并延长交⊙A于点P
点P即为所求
( http: / / www.21cnjy.com / )
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明
证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠_________=∠_________
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(______________________) (填推理的依据)
∴∠APC=∠BAC
2、如图,四边形ABCD为平行四边形,以AD为直径的⊙O交AB于点E,连接DE,DA=2,DE,DC=5.过点E作直线l.过点C作CH⊥l,垂足为H.www.21-cn-jy.com
(1)若l∥AD,且l与⊙O交于另一点F,连接DF,求DF的长;
(2)连接BH,当直线l绕点E旋转时,求BH的最大值;
(3)过点A作AM⊥l,垂足为M,当直线l绕点E旋转时,求CH﹣4AM的最大值.
( http: / / www.21cnjy.com / )
3、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
(1)求证:AC为⊙O的切线;
(2)若⊙O半径为2,OD=4.求线段AD的长.
( http: / / www.21cnjy.com / )
4、如图,射线AB和射线CB相交 ( http: / / www.21cnjy.com )于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.2·1·c·n·j·y
(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;
(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;
(3)当α=120°,tan∠DAB=时,请直接写出的值.
( http: / / www.21cnjy.com / )
5、如图,点O,B的坐标分别是(0,0),(3,0).将△OAB绕点O逆时针旋转90°,得到△OA1B1.
(1)画出平面直角坐标系和三角形△OA1B1;
(2)求旋转过程中点B走过的路径的长.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、D
【分析】
连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
【详解】
解:连接CD,如图所示:
( http: / / www.21cnjy.com / )
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
【点睛】
本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
2、B
【分析】
连接OA、OB,过点O作,由三角形内角和求出,由圆周角定理可得,由得是等腰三角形,即可知,,根据三角函数已可求出AD,进而得出答案.
【详解】
( http: / / www.21cnjy.com / )
如图,连接OA、OB,过点O作,
∵,,
∴,
∴,
∵,
∴是等腰三角形,
∴,,
∴,
∴,,
∴.
故选:B.
【点睛】
本题主要考查了圆周角定理,解题的关键在于能够熟练掌握圆周角定理.
3、B
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
( http: / / www.21cnjy.com / )
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径 ( http: / / www.21cnjy.com )所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
4、B
【分析】
利用,得到∠BAC=∠DCA,根据同圆的半径相等,AC=AB=3,再利用勾股定理求解 可得tan∠ACD=,从而可得答案.
【详解】
解:如图, ∵,
∴∠BAC=∠DCA.
( http: / / www.21cnjy.com / )
∵同圆的半径相等, ∴AC=AB=3,而
在Rt△ACD中,tan∠ACD=.
∴tan∠BAC=tan∠ACD=.
故选B.
【点睛】
本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.
5、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.21·cn·jy·com
6、B
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.【来源:21·世纪·教育·网】
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内 ( http: / / www.21cnjy.com )心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
7、A
【分析】
根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.
【详解】
解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;
B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;
C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;
D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.
故选A.
【点睛】
本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.www-2-1-cnjy-com
8、B
【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
【详解】
解:如图,连接OC,OD.
( http: / / www.21cnjy.com / )
∵五边形ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
故选:B
【点睛】
本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9、D
【分析】
根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.21教育网
【详解】
当或者时,随着的增大而增大,故(1)不正确;
如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
∵圆的直径所对的圆周角为直角
∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


∴以为三边长度的三角形,是直角三角形,故(5)错误;
故选:D.
【点睛】
本题考查了三角形、垂直平分线、反比例函数、 ( http: / / www.21cnjy.com )圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.2-1-c-n-j-y
10、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
( http: / / www.21cnjy.com / )
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,

∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
二、填空题
1、
【分析】
根据扇形的面积公式,即可求解.
【详解】
解:根据题意得:扇形的面积为 .
故答案为:
【点睛】
本题主要考查了求扇形的面积,熟练掌握扇形的面积等于 (其中 为圆心角, 为半径)是解题的关键.
2、在⊙A上
【分析】
先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.
【详解】
解:∵点A的坐标为(4,3),
∴OA==5,
∵半径为5,
∴OA=r,
∴点O在⊙A上.
故答案为:在⊙A上.
【点睛】
本题考查了点与圆的位置关系:点与圆的位置关系 ( http: / / www.21cnjy.com )有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外 d>r;当点P在圆上 d=r;当点P在圆内 d<r.
3、
【分析】
由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为.
【详解】
∵是一个圆锥在某平面上的正投影
∴为等腰三角形
∵AD⊥BC

在中有

由圆锥侧面积公式有.
故答案为:。
【点睛】
本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为.21*cnjy*com
4、
【分析】
先根据弧的度数与它所对应的圆心角的度数的关系,求得弧对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得.
【详解】
弧的度数等于它所对应的圆心角的度数,由于弧为,所以 ,
顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:
, ,

故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题考查弧、圆周角、圆心角的概念,及它们之间的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.
5、(2,1)
【分析】
根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.
【详解】
解:根据垂径定理的推论:弦的垂直平分线必过圆心,
可以作弦AB和BC的垂直平分线,交点即为圆心.
如图所示,则圆心是(2,1).
故答案为(2,1).
( http: / / www.21cnjy.com / )
【点睛】
本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.
三、解答题
1、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【分析】
(1)根据按步骤作图即可;
(2)根据圆周角定理进行证明即可
【详解】
解:(1)如图所示,
( http: / / www.21cnjy.com / )
(2)证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠BAC=∠BAD
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(圆周角定理) (填推理的依据)
∴∠APC=∠BAC
故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【点睛】
本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.
2、(1);(2);(3)
【分析】
(1)由平行线的性质可得∠ADE=∠DEF,则AE=DF,由AD是圆O的直径,得到∠AED=90°,则;21·世纪*教育网
(2)连接CE,取CE中点K,过点K作KM⊥BE于M,由题意可知H在以K为圆心,以CE为直径的圆上,如图所示,当H运动到的位置时,即此时,B,K三点共线,BH有最大值,由此求解即可;
(3)如图3-1所示,过点B作BN⊥l于N,过点B作BT∥l交CH于T,先证四边形BCHN是平行四边形,得到HT=BN,再证△AME∽△BNE,得到BN=4AM,即可推出CH-4AM=CH-HT=CT,又由 即可得到当直线l与直线BC垂直时,,如图3-2所示,即此时CH-4AM的最大值即为BC,由此求解即可.
【详解】
解:(1)如图所示,连接DF,
∵AD∥l,
∴∠ADE=∠DEF,
∴AE=DF,
∵AD是圆O的直径,
∴∠AED=90°,
∴;
( http: / / www.21cnjy.com / )
(2)如图所示,连接CE,取CE中点K,过点K作KM⊥BE于M,
∵CH⊥EH,
∴∠CHE=90°,
∴H在以K为圆心,以CE为直径的圆上,
∵,
∴如图所示,当H运动到的位置时,即此时,B,K三点共线,BH有最大值,
∵四边形ABCD是平行四边形,
∴AB=CD=5,AB∥CD,
∴BE=AB-AE=4,∠CDE=∠AED=90°,∠DCE=∠MEK,
∴,
∴,
∵∠CDE=∠EMK=90°,
∴△CDE∽△EMK,
∴,
∴,,
∴,
∴,
∴,
∴BH的最大值为;
( http: / / www.21cnjy.com / )
(3)如图3-1所示,过点B作BN⊥l于N,过点B作BT∥l交CH于T,
∵BN⊥l,CH⊥l,
∴BN∥CH,
∴四边形BCHN是平行四边形,
∴HT=BN,
同理可证AM∥BN,
∴△AME∽△BNE,
∴,
∴BN=4AM,
∴HT=4AM,
∴CH-4AM=CH-HT=CT,
( http: / / www.21cnjy.com / )
又∵
∴当直线l与直线BC垂直时,,如图3-2所示,即此时CH-4AM的最大值即为BC,
∵四边形ABCD是平行四边形,
∴,
∴CH-4AM的最大值为.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了平行四边形的性质与判定 ( http: / / www.21cnjy.com ),弧、弦,圆周角之间的关系,直径所对的圆周角是直角,圆内一点到圆上一点的最大距离,勾股定理,相似三角形的性质与判定等等,熟练掌握相关知识是解题的关键.21教育名师原创作品
3、(1)见解析;(2)4
【分析】
(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
【详解】
解:(1)连接OB,
( http: / / www.21cnjy.com / )
∵AB是⊙O的切线,
∴OB⊥AB,
即∠ABO=90°,
∵BC是弦,OA⊥BC,
∴CE=BE,
∴AC=AB,
在△AOB和△AOC中,

∴△AOB≌△AOC(SSS),
∴∠ACO=∠ABO=90°,
即AC⊥OC,
∴AC是⊙O的切线;
(2)在Rt△BOD中,由勾股定理得,
BD==2,
∵sinD==,⊙O半径为2,OD=4.
∴=,
解得AC=2,
∴AD=BD+AB=4.
【点睛】
本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
4、(1)45°;(2)AE=BE+CE,理由见解析;(3)或
【分析】
(1)连接AC,证A、B、E、C四点共圆, ( http: / / www.21cnjy.com )由圆周角定理得出∠AEB=∠ACB,证出△ABC是等腰直角三角形,则∠ACB=45°,进而得出结论;
(2)在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,证△ABF≌△CBE(SAS),得出∠ABF=∠CBE,BF=BE,由等腰三角形的性质得出FH=EH,由三角函数定义得出FH=EH=BE,进而得出结论;
(3)分两种情况,由(2)得FH=EH=BE,由三角函数定义得出AH=3BH=BE,分别表示出CE,进而得出答案.
【详解】
解:(1)连接AC,如图①所示:
( http: / / www.21cnjy.com / )
∵α=90°,∠ABC=α,∠AEC=α,
∴∠ABC=∠AEC=90°,
∴A、B、E、C四点共圆,
∴∠AEB=∠ACB,
∵∠ABC=90°,AB=CB,
∴△ABC是等腰直角三角形,
∴∠ACB=45°,
∴∠AEB=45°;
(2)AE=BE+CE,理由如下:
在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:
∵∠ABC=∠AEC,∠ADB=∠CDE,
∴180°﹣∠ABC﹣∠ADB=180°﹣∠AEC﹣∠CDE,
∴∠A=∠C,
在△ABF和△CBE中,

∴△ABF≌△CBE(SAS),
∴∠ABF=∠CBE,BF=BE,
∴∠ABF+∠FBD=∠CBE+∠FBD,
∴∠ABD=∠FBE,
∵∠ABC=120°,
∴∠FBE=120°,
∵BF=BE,
∴∠BFE=∠BEF=,
∵BH⊥EF,
∴∠BHE=90°,FH=EH,
在Rt△BHE中,,
∴,
∵AE=EF+AF,AF=CE,
∴;
(3)分两种情况:
①当点D在线段CB上时,在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示,
( http: / / www.21cnjy.com / )
由(2)得:FH=EH=BE,
∵tan∠DAB=,
∴,
∴,
∴;
②当点D在线段CB的延长线上时,在射线AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图③所示,【出处:21教育名师】
( http: / / www.21cnjy.com / )
同①得:,
∴,
∴=;
综上所述,当α=120°,时,的值为或.
【点睛】
本题是三角形综合题目,考查了全等三角形的判 ( http: / / www.21cnjy.com )定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性强,构造全等三角形是解题的关键.21世纪教育网版权所有
5、(1)见解析;(2)
【分析】
(1)根据点O的坐标确定直角坐标系,根据旋转的性质确定点A1、B1,顺次连线即可得到△OA1B1;
(2)利用弧长公式计算即可.
【详解】
解:(1)如图,△OA1B1即为所求三角形;
( http: / / www.21cnjy.com / )
(2)旋转过程中点B走过的路径的长=.
【点睛】
此题考查了旋转作图,弧长的计算公式,正确掌握旋转的性质及弧长的计算公式是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)