中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个 ( http: / / www.21cnjy.com )题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www.21-cn-jy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
( http: / / www.21cnjy.com / )
A.20° B.25° C.30° D.40°
2、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )21·cn·jy·com
A.点O在⊙A内 B.点O在⊙A外
C.点O在⊙A上 D.以上都有可能
3、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A.6,3 B.6,3 C.3,6 D.6,3
4、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( ) www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
A.70° B.50° C.20° D.40°
5、如图,一个宽为2厘米的 ( http: / / www.21cnjy.com )刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )【版权所有:21教育】
( http: / / www.21cnjy.com / )
A.5厘米 B.4厘米 C.厘米 D.厘米
6、某村东西向的废弃小路/两侧分别有 ( http: / / www.21cnjy.com )一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
( http: / / www.21cnjy.com / )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
7、如图,AB是⊙O的直 ( http: / / www.21cnjy.com )径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )21*cnjy*com
( http: / / www.21cnjy.com / )
A.50° B.55° C.65° D.75°
8、如图,四边形内接于,如果它的一个外角,那么的度数为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
9、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
10、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
( http: / / www.21cnjy.com / )
A.4 B.6 C.8 D.10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
( http: / / www.21cnjy.com / )
2、如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为____
( http: / / www.21cnjy.com / )
3、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.
4、如图AB为⊙O的直径,点P为AB延长 ( http: / / www.21cnjy.com )线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.
( http: / / www.21cnjy.com / )
5、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,射线.
求作:,使得点在射线上,,.
作法:①在射线上任取一点;
②以点为圆心,的长为半径画圆,交射线于另一点;
③以点为圆心,的长为半径画弧,在射线上方交于点;
④连接、.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:为的直径,点在上,
(___________________________)(填推理依据).
连接.
,
为等边三角形(___________________________)(填推理依据).
所以为所求作的三角形.
2、如图,,,点D是上一点,与相交于点F,且.
( http: / / www.21cnjy.com / )
(1)求证:;
(2)求证:;
(3)若点D是中点,连接,求证:平分.
3、如图,AB为⊙O的直径,弦于,连接,过作,交⊙O于点,连接DF,过作,交DF的延长线于点.21教育名师原创作品
(1)求证:BG是⊙O的切线;
(2)若,DF=4,求FG的长.
( http: / / www.21cnjy.com / )
4、如图,是的直径,为上一点,.
(1)求证: 是 的切线.
(2)若,垂足为,交于点,求证:是等腰三角形.
( http: / / www.21cnjy.com / )
5、如图,四边形ABCD内接于⊙O,OC=2,AC=2.
( http: / / www.21cnjy.com / )
(1)求点O到AC的距离;
(2)求∠ADC的度数.
-参考答案-
一、单选题
1、B
【分析】
连接OA,如图,根据切线的 ( http: / / www.21cnjy.com )性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【出处:21教育名师】
【详解】
解:连接OA,如图,
( http: / / www.21cnjy.com / )
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2·1·c·n·j·y
2、B
【分析】
本题可先由勾股定理等性质算出点与圆心的 ( http: / / www.21cnjy.com )距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.【来源:21cnj*y.co*m】
【详解】
解:∵点A(﹣4,﹣3),
∴,
∵⊙A的半径为4,
∴,
∴点O在⊙A外;
故选:B
【点睛】
本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.
3、B
【分析】
如图1,⊙O是正六边形的外接圆,连接OA ( http: / / www.21cnjy.com ),OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
【详解】
解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
∵六边形ABCDEF是正六边形,
∴∠AOB=360°÷6=60°,
∵OA=OB,
∴△OAB是等边三角形,
∴OA=AB=6;
( http: / / www.21cnjy.com / )
(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
( http: / / www.21cnjy.com / )
∵六边形ABCDEF是正六边形,
∴∠AO1B=60°,
∵O1A= O1B,
∴△O1AB是等边三角形,
∴O1A= AB=6,
∵O1M⊥AB,
∴∠O1MA=90°,AM=BM,
∵AB=6,
∴AM=BM,
∴O1M.
故选B.
【点睛】
本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
4、D
【分析】
首先连接OA,OB,由PA,PB为⊙O的 ( http: / / www.21cnjy.com )切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【来源:21·世纪·教育·网】
【详解】
解:连接OA,OB,
( http: / / www.21cnjy.com / )
∵PA,PB为⊙O的切线,
∴∠OAP=∠OBP=90°,
∵∠ACB=70°,
∴∠AOB=2∠P=140°,
∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
故选:D.
【点睛】
此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
5、D
【分析】
根据题意先求出弦AC的长,再过点O作O ( http: / / www.21cnjy.com )B⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.
【详解】
解:∵杯口外沿两个交点处的读数恰好是2和8,
∴AC=8-2=6厘米,
过点O作OB⊥AC于点B,
( http: / / www.21cnjy.com / )
则AB=AC=×6=3厘米,
设杯口的半径为r,则OB=r-2,OA=r,
在Rt△AOB中,
OA2=OB2+AB2,即r2=(r-2)2+32,
解得r=厘米.
故选:D.
【点睛】
本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
6、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
( http: / / www.21cnjy.com / )
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.21教育网
7、C
【分析】
首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
【详解】
解:∵BD是切线,
∴BD⊥AB,
∴∠ABD=90°,
∵∠BOC=50°,
∴∠A=∠BOC=25°,
∴∠D=90°﹣∠A=65°,
故选:C.
【点睛】
本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
8、D
【分析】
由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.21·世纪*教育网
【详解】
∵
∴
∵四边形内接于
∴
又∵
∴.
故选:D.
【点睛】
本题考查了圆内接四边形的性质、圆周 ( http: / / www.21cnjy.com )角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
9、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.21cnjy.com
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
10、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆角 ( http: / / www.21cnjy.com ),直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
二、填空题
1、3
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
( http: / / www.21cnjy.com / )
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
2、
【分析】
如图(见解析),连接,先根据圆周角定理可得是圆形纸片的直径,从而可得,再利用勾股定理可求出的长,然后利用扇形的面积公式即可得.
【详解】
解:如图,连接,
( http: / / www.21cnjy.com / )
由题意得:,
是圆形纸片的直径,
,
在中,,即,
解得,
则这个扇形(阴影部分)的面积为,
故答案为:.
【点睛】
本题考查了圆周角定理、扇形的面积等知识点,熟练掌握扇形的面积公式是解题关键.
3、18.84
【分析】
先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.
【详解】
解:设圆弧所在圆的半径为厘米,
则,
解得,
则它所在圆的周长为(厘米),
故答案为:.
【点睛】
本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.
4、①②④
【分析】
连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
【详解】
解:连接OM,
( http: / / www.21cnjy.com / )
∵PE为的切线,
∴,
∵,
∴,
∴,
∵,,
∴,
即AM平分,故①正确;
∵AB为的直径,
∴,
∵,,
∴,
∴,
∴,故②正确;
∵,
∴,
∵,
∴,
∴的长为,故③错误;
∵,,,
∴,
∴,
∴,
∴,
又∵,,,
∴,
又∵,
∴,
设,则,
∴,
在中,,
∴,
∴,
由①可得,
,
故④正确,
故答案为:①②④.
【点睛】
本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.2-1-c-n-j-y
5、##
【分析】
如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.
【详解】
解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点
∵点C的坐标为(2,2),圆C与x轴相切于点A,
∴点A的坐标为(2,0),
∴OA=OD=2,即O是AD的中点,
又∵M是AB的中点,
∴OM是△ABD的中位线,
∴,
∴当BD最小时,OM也最小,
∴当B运动到时,BD有最小值,
∵C(2,2),D(-2,0),
∴,
∴,
∴,
故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了坐标与图形,一点到圆上一点 ( http: / / www.21cnjy.com )的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.
三、解答题
1、
(1)图形见解析
(2)直径所对的圆周角是直角;三边相等的三角形是等边三角形.
【分析】
(1)根据要求作出图形即可;
(2)根据圆周角定理等边三角形的判定和性质解决问题即可.
(1)
如图,△ABC即为所求作.
( http: / / www.21cnjy.com / )
(2)
∵AB为⊙O的直径,点C在⊙O上,
∴∠ACB=90°(直径所对的圆周角是直角),
连接OC.
∵OA=OC=AC,
∴△AOC为等边三角形(三边相等的三角形是等边三角形),
∴∠A=60°.
故答案为:直径所对的圆周角是直角,三边相等的三角形是等边三角形.
【点睛】
本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、(1)证明见解析;(2)证明见解析;(3)证明见解析
【分析】
(1)在和中,,,故可证明三角形相似.
(2)由得出.
(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,,进而说明,得出平分.法二:通过得出F、D、C、E四点共圆,由得,从而得出平分.
【详解】
解:(1)证明在和中
.
(2)证明:在和中
.
(3)证明:
又D是中点
,
平分.
法二:
F、D、C、E四点共圆
又D是点,
平分.
【点睛】
本题考察了相似三角形的判定,全等三角形,角 ( http: / / www.21cnjy.com )平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.21世纪教育网版权所有
3、(1)见解析;(2)
【分析】
(1)由题意根据切线的判定证明半径OB⊥BG即可BG是⊙O的切线;
(2)根据题意连接CF,根据圆周角定理和中位线性质得出,进而依据等边三角形和四边形BEDG是矩形进行分析即可得出FG的长.
【详解】
解:(1)证明:∵ C,A,D,F在⊙O上,∠CAF=90°,
∴ ∠D=∠CAF=90°.
∵ AB⊥CE,BG⊥DF,
∴ ∠BED=∠G=90°.
∴ 四边形BEDG中,∠ABG=90°.
∴ 半径OB⊥BG.
∴ BG是⊙O的切线.
(2)连接CF,
( http: / / www.21cnjy.com / )
∵ ∠CAF=90°,
∴ CF是⊙O的直径.
∴ OC=OF.
∵ 直径AB⊥CD于E,
∴ CE=DE.
∴ OE是△CDF的中位线.
∴ .
∵ ,∠AFD=30°,
∴ ∠ACD=∠AFD=30°.
∴ .
∵ OA=OC,
∴ △AOC是等边三角形.
∵ CE⊥AB,
∴ E为AO中点,
∴ OA=2OE=4,OB=4.
∴ .
∵ ∠BED=∠D=∠G=90°,
∴ 四边形BEDG是矩形.
∴ DG=BE=6.
∴ .
【点睛】
本题考查圆的综合问题,熟练掌握切线的判定和圆周角定理和中位线性质以及等边三角形和矩形性质是解题的关键.21*cnjy*com
4、(1)证明见解析;(2)证明见解析
【分析】
(1)连接,为半径,直径所对的圆周角为,;由题意可知,进而可得出是的切线.
(2)由题意知,对顶角,,故有,;进而得出是等腰三角形.
【详解】
解:(1)证明:如图,连接
( http: / / www.21cnjy.com / )
是的直径
又过圆心
是的切线.
(2)
是等腰三角形.
【点睛】
本题考察了圆周角、切线、等腰三角形等知识点.解题的关键与难点在于找角与角之间相等或互余的关系.
5、(1);(2) .
【分析】
(1)连接OA,作OH⊥AC于H,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;
(2)根据圆周角定理求出∠B,根据圆内接四边形的性质计算,得到答案.
【详解】
解:(1)连接OA,作OH⊥AC于H,
( http: / / www.21cnjy.com / )
OA2+OC2=8,AC2=8,
∴OA2+OC2=AC2,
∴△AOC为等腰直角三角形,
∴OH= AC=,即点O到AC的距离为;
(2)
∠B=∠AOC=45°,
∵四边形ABCD内接于⊙O,
∴∠ADC=180°-45°=135°.
【点睛】
本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)