【强化训练】沪教版(上海)九下 第二十七章圆与正多边形专项训练试卷(含答案详解)

文档属性

名称 【强化训练】沪教版(上海)九下 第二十七章圆与正多边形专项训练试卷(含答案详解)
格式 doc
文件大小 2.2MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-22 08:51:57

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题 ( http: / / www.21cnjy.com )目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )
( http: / / www.21cnjy.com / )
A.10 B.6 C.6 D.12
2、如图,ABC内接于⊙O,,BD为⊙O的直径,且BD=2,则DC=( )
( http: / / www.21cnjy.com / )
A.1 B. C. D.
3、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )
( http: / / www.21cnjy.com / )
A.3 B.2 C.1 D.
4、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
( http: / / www.21cnjy.com / )
A.20° B.25° C.30° D.40°
5、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
6、如图,正方形ABCD内接于⊙O,点P在上,则下列角中可确定大小的是(  )
( http: / / www.21cnjy.com / )
A.∠PCB B.∠PBC C.∠BPC D.∠PBA
7、如图,Rt△ABC中,∠A= ( http: / / www.21cnjy.com )90°,∠B=30°,AC=1,将Rt△ABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为(  )
( http: / / www.21cnjy.com / )
A. B. C. D.(2+)π
8、如图,四边形ABCD内接于⊙O,连接BD,若,∠BDC=50°,则∠ADC的度数是( )
( http: / / www.21cnjy.com / )
A.125° B.130° C.135° D.140°
9、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
10、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )
( http: / / www.21cnjy.com / )
A. B.
C.3 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点.若,.则图中影部分的面积和为 __(结果保留根号和.
( http: / / www.21cnjy.com / )
2、如图,AB为⊙的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长为__________
( http: / / www.21cnjy.com / )
3、往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm,则水面AB的宽度为___cm.21教育网
( http: / / www.21cnjy.com / )
4、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.
5、如图,点D为边长是的等边△ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.21·cn·jy·com
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知P是⊙O上一点,用两种不同的方法过点P作⊙O的一条切线.
要求:用直尺和圆规作图.
( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
2、在平面直角坐标系xOy中,点A(0,-1 ( http: / / www.21cnjy.com )),以O为圆心,OA长为半径画圆,P为平面上一点,若存在⊙O上一点B,使得点P关于直线AB的对称点在⊙O上,则称点P是⊙O的以A为中心的“关联点”.
( http: / / www.21cnjy.com / )
(1)如图,点,,中,⊙O的以点A为中心的“关联点”是________;
(2)已知点P(m,0)为x轴上一点,若点P是⊙O的以A为中心的“关联点”,直接写出m的取值范围;
(3)C为坐标轴上一点,以OC为一边作等边△OCD,若CD边上至少有一个点是⊙O的以点A为中心的“关联点”,求CD长的最大值.www.21-cn-jy.com
3、在平面内,给定不在同一直线上的点A ( http: / / www.21cnjy.com ),B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.【出处:21教育名师】
( http: / / www.21cnjy.com / )
4、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
(2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.
( http: / / www.21cnjy.com / )
5、如图,AC是⊙O的弦,过点O作OP⊥OC交AC于点P,在OP的延长线上取点B,使得BA=BP.
(1)求证:AB是⊙O的切线;
(2)若⊙O的半径为4,PC=,求线段AB的长.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、D
【分析】
连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
【详解】
解:连接OB,OC,
( http: / / www.21cnjy.com / )
∵∠BAC=30°,
∴∠BOC=60°.
∵OB=OC,BC=6,
∴△OBC是等边三角形,
∴OB=BC=6.
∴⊙O的直径等于12.
故选:D.
【点睛】
本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
2、C
【分析】
根据三角形内角和定理求得,根据同弧所对的圆周角相等可得,根据直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理即可求得的长www-2-1-cnjy-com
【详解】
解:
为⊙O的直径,
在,, BD=2,
故选C
【点睛】
本题考查了三角形内角和定理,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,含30度角的直角三角形的性质,求得是解题的关键.
3、B
【分析】
连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
【详解】
解:连接OC,如图
( http: / / www.21cnjy.com / )
∵AB 为⊙O 的直径,CDAB,垂足为点 E,CD=8,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
4、B
【分析】
连接OA,如图,根据切线的 ( http: / / www.21cnjy.com )性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
( http: / / www.21cnjy.com / )
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
5、A
【分析】
直接根据点与圆的位置关系进行解答即可.
【详解】
解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
∴点P在圆内.
故选:A.
【点睛】
本题考查了点与圆的位置关系 ( http: / / www.21cnjy.com ),当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.【来源:21cnj*y.co*m】
6、C
【分析】
由题意根据正方形的性质得到BC弧所对的圆心角为90°,则∠BOC=90°,然后根据圆周角定理进行分析求解.21cnjy.com
【详解】
解:连接OB、OC,如图,
( http: / / www.21cnjy.com / )
∵正方形ABCD内接于⊙O,
∴所对的圆心角为90°,
∴∠BOC=90°,
∴∠BPC=∠BOC=45°.
故选:C.
【点睛】
本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90°是解题的关键.
7、C
【分析】
根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解.
【详解】
解:根据题意可得,Rt△ABC的运动示意图,如下:
( http: / / www.21cnjy.com / )
Rt△ABC中,∠A=90°,∠B=30°,AC=1,
∴,,,
由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,
顶点A所经过的路径的长为,
故选:C
【点睛】
此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线.
8、B
【分析】
如图所示,连接AC,由圆周角定理∠B ( http: / / www.21cnjy.com )AC=∠BDC=50°,再由等弧所对的圆周角相等得到∠ABC=∠BAC=50°,再根据圆内接四边形对角互补求解即可.【版权所有:21教育】
【详解】
解:如图所示,连接AC,
∴∠BAC=∠BDC=50°,
∵,
∴∠ABC=∠BAC=50°,
∵四边形ABCD是圆内接四边形,
∴∠ADC=180°-∠ABC=130°,
故选B.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键.
9、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
10、C
【分析】
连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.2·1·c·n·j·y
【详解】
解:如图,连接OA,OB,则OA=OB,
( http: / / www.21cnjy.com / )
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∵正方形ABCD的面积是18,
∴,
∴,即:

故选C.
【点睛】
本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.
二、填空题
1、
【分析】
设的中点为,连接,先求出,,则,,然后求出,最后根据求解即可.
【详解】
解:设的中点为,连接,
,四边形ABCD是矩形,
,∠ABC=90°,
又∵∠CAB=30°,
∴,
∴,
∴,



∴.
故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到.
2、3
【分析】
根据垂径定理可得,进而利用勾股定理解直角三角形即可求得的长
【详解】
解: AB为⊙的直径,弦CD⊥AB于点H,若AB=10,CD=8,
在中,
故答案为:3
【点睛】
本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.
3、24
【分析】
连接OA,过点O作OD⊥AB交AB于点C交⊙O于D,再根据勾股定理求出AC的长,进而可得出AB的长.【来源:21·世纪·教育·网】
【详解】
解:连接OA,过点O作OD⊥AB交AB于点C交⊙O于D.
( http: / / www.21cnjy.com / )
∵OC⊥AB,
∴AC=CB,
∵OA=OD=13cm,CD=8cm,
∴OC=OD﹣CD=5(cm),
∴,
∴AB=2AC=24(cm),
故答案为:24.
【点睛】
本题主要考查垂径定理,掌握垂径定理和勾股定理是解题的关键.
4、六
【分析】
由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.
【详解】
解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:
( http: / / www.21cnjy.com / )
∵半径与边长相等,
∴这个三角形是等边三角形,
∴正多边形的边数:360°÷60°=6,
∴这个正多边形是正六边形
故答案为:六.
【点睛】
本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.
5、
【分析】
根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.2-1-c-n-j-y
【详解】
解:根据题意作等边三角形的外接圆,
( http: / / www.21cnjy.com / )
D在运动过程中始终保持∠ADB=120°不变,
在圆上运动,
当点运动到的中点时,四边形ADBC的面积S的最大值,
过点作的垂线交于点,如图:
( http: / / www.21cnjy.com / )



在中,

解得:,

过点作的垂线交于,
( http: / / www.21cnjy.com / )




故答案是:.
【点睛】
本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.
三、解答题
1、见详解
【分析】
方法一:连接OP,并延长,以点P为圆心,O ( http: / / www.21cnjy.com )P长为半径画弧,交OP的延长线于点C,然后再以点O、C为圆心,大于OC长的一半为半径画弧,交于点M、N,则问题可求解;方法二:连接OP,以点P为圆心,OP长为半径画弧,交圆O于点D,连接OD并延长,然后以点D为圆心OD长为半径画弧,交OD的延长线于点E,连接PE,则问题可求解.21*cnjy*com
【详解】
解:方法一如图所示:
( http: / / www.21cnjy.com / )
直线MN即为⊙O的切线;
方法二如图所示:
( http: / / www.21cnjy.com / )
则PE即为⊙O的切线.
【点睛】
本题主要考查切线的性质,熟练掌握切线的性质是解题的关键.
2、(1)P1,P2;(2);(3).
【分析】
(1)根据题意,点的对称点的轨迹是以为圆心2为半径的圆,则平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,据此即可判断;21*cnjy*com
(2)根据(1)的结论求得与轴的交点即可求解;
(3)根据题意可知,平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,根据题意求的最大值,即求得的最大值,故当点位于轴负半轴时,画出满足条件的等边三角形△OCD,进而根据切线的性质以及解直角三角形求解即可
【详解】
(1)根据题意,点的对称点的轨迹是以为圆心2为半径的圆,则平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,
( http: / / www.21cnjy.com / )
由图可知符合条件,
故答案为:P1,P2;
(2)如图,设与坐标轴交于点,
,
,

( http: / / www.21cnjy.com / )

(3)如图,由题意可知,平面上满足条件的点P在以A为圆心2为半径的圆上或圆内
因此满足条件的等边三角形△OCD如图所示放置时,CD长度最大,
( http: / / www.21cnjy.com / )
设切点为G,连接AG
∵∠AGC=90°,∠OCD=60°,AG=2


【点睛】
本题考查了轴对称的性质,解直角三角形,切线的性质,等边三角形的性质,从题意分析得出“点的对称点的轨迹是以为圆心2为半径的圆”是解题的关键.21·世纪*教育网
3、见解析
【分析】
由题意画图,再根据圆周角定理的推论即可得证结论.
【详解】
证明:根据题意作图如下:
( http: / / www.21cnjy.com / )
∵BD是圆周角ABC的角平分线,
∴∠ABD=∠CBD,
∴,
∴AD=CD.
【点睛】
本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
4、(1)作图见解析;(2)
【分析】
(1)由于D点为⊙O的切点,即可得到 ( http: / / www.21cnjy.com )OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
(2)连接CD和OD,根据切 ( http: / / www.21cnjy.com )线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.21教育名师原创作品
【详解】
解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;
( http: / / www.21cnjy.com / )
(2)如图所示,连接CD和OD,
由题意,AD为⊙O的切线,
∵OC⊥AC,且OC为半径,
∴AC为⊙O的切线,
∴AC=AD,
∴∠ACD=∠ADC,
∵CD=BD,
∴∠B=∠DCB,
∵∠ADC=∠B+∠BCD,
∴∠ACD=∠ADC=2∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
即:3∠DCB=90°,
∴∠DCB=30°,
∵OC=OD,
∴∠DCB=∠ODC=30°,
∴∠COD=180°-2×30°=120°,
∵∠DCB=∠B=30°,
∴在Rt△ABC中,∠BAC=60°,
∵AO平分∠BAC,
∴∠CAO=∠DAO=30°,
∴在Rt△ACO中,,
∴.
( http: / / www.21cnjy.com / )
【点睛】
本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.21世纪教育网版权所有
5、(1)见解析;(2).
【分析】
(1)先根据等腰三角形的性质可得∠BPA=∠BAP、∠OAC=∠OCA.再运用等量代换说明∠OAB=90°,即可证明结论;
(2)先由勾股定理可得OP=2, 设AB=x,则OB=x+2.在Rt△AOB中运用勾股定理列方程解答即可.
【详解】
解:(1)证明:∵BA=BP,
∴∠BPA=∠BAP.
∵OA=OC,
∴∠OAC=∠OCA.
∵OP⊥OC,
∴∠COP=90°.
∴∠OPC+∠OCP=90°.
∵∠APB=∠OPC,
∴∠BAP+∠OAC=90°.即∠OAB=90°,
∴OA⊥AB.
∵OA为半径,
∴AB为⊙O的切线;
(2)在Rt△OPC中,OC=4,PC=,
∴OP=2.
设AB=x,则OB=x+2.
在Rt△AOB中,,
∴x=3,即AB=3.
【点睛】
本题主要考查了圆的性质、圆的切线证明、勾股定理等知识点,灵活运用相关性质、定理成为解答本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)