2022-2023学年苏科版九年级数学上册 2.2圆的对称性 同步达标测试题(word、含解析)

文档属性

名称 2022-2023学年苏科版九年级数学上册 2.2圆的对称性 同步达标测试题(word、含解析)
格式 docx
文件大小 420.3KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-08-20 14:56:51

图片预览

文档简介

2022-2023学年苏科版九年级数学上册《2.2圆的对称性》同步达标测试题(附答案)
一.选择题(共8小题,满分40分)
1.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为(  )
A.2 B.4 C.6 D.8
2.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是(  )
A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5
3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为(  )
A.3 B.4 C.3 D.4
4.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是(  )
A.40° B.30° C.20° D.15°
5.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为(  )
A. cm B.9 cm C.cm D.cm
6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为(  )
A.cm B.cm C.cm或cm D.cm或cm
7.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是(  )
A.(0,0) B.(﹣1,1) C.(﹣1,0) D.(﹣1,﹣1)
8.下列语句中不正确的有(  )
①相等的圆心角所对的弧相等;
②平分弦的直径垂直于弦;
③圆是轴对称图形,任何一条直径都是它的对称轴;
④长度相等的两条弧是等弧.
A.3个 B.2个 C.1个 D.4个
二.填空题(共8小题,满分40分)
9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是    .
10.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于   m.
11.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为   .
12.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为   .
13.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为    cm.
14.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是   .
15.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为   .
16.如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是   .
三.解答题(共5小题,满分40分)
17.如图,在⊙O中,弦AC⊥BD于点E,连接AB,CD,BC
(1)求证:∠AOB+∠COD=180°;
(2)若AB=8,CD=6,求⊙O的直径.
18.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连接AC.
(1)求证:AC=CG;
(2)若CD=8,OG=10,求⊙O的半径.
19.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)求证:E是OB的中点;
(2)若AB=16,求CD的长.
20.如图,A,B,C,D在⊙O上,AB∥CD,经过圆心O的线段EF⊥AB于点F,与CD交于点E.
(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;
(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.
21.如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2.
(1)求⊙O半径;
(2)求弦CD的长.
参考答案
一.选择题(共8小题,满分40分)
1.解:∵CE=2,DE=8,
∴OB=5,
∴OE=3,
∵AB⊥CD,
∴在△OBE中,得BE=4,
∴AB=2BE=8.
故选:D.
2.解:如图,连接OA,作OM⊥AB于M,
∵⊙O的直径为10,
∴半径为5,
∴OM的最大值为5,
∵OM⊥AB于M,
∴AM=BM,
∵AB=6,
∴AM=3,
在Rt△AOM中,OM====4;
此时OM最短,
所以OM长的取值范围是4≤OM≤5.
故选:B.
3.解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,
由垂径定理、勾股定理得:OM=ON==3,
∵弦AB、CD互相垂直,
∴∠DPB=90°,
∵OM⊥AB于M,ON⊥CD于N,
∴∠OMP=∠ONP=90°
∴四边形MONP是矩形,
∵OM=ON,
∴四边形MONP是正方形,
∴OP=3
故选:C.
4.解:连接CO,如图:
∵在⊙O中,=,
∴∠AOC=∠AOB,
∵∠AOB=40°,
∴∠AOC=40°,
∴∠ADC=∠AOC=20°,
故选:C.
5.解:
连接OA、OB、OE,
∵四边形ABCD是正方形,
∴AD=BC,∠ADO=∠BCO=90°,
∵在Rt△ADO和Rt△BCO中
∵,
∴Rt△ADO≌Rt△BCO(HL),
∴OD=OC,
∵四边形ABCD是正方形,
∴AD=DC,
设AD=acm,则OD=OC=DC=AD=acm,
在△AOD中,由勾股定理得:OA=OB=OE=acm,
∵小正方形EFCG的面积为16cm2,
∴EF=FC=4cm,
在△OFE中,由勾股定理得:=42+,
解得:a=﹣4(舍去),a=8,
a=4(cm),
故选:C.
6.解:如图,连接AC,AO,
∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM=AB=×8=4cm,OD=OC=5cm,
当C点位置如图1所示时,
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM===3cm,
∴CM=OC+OM=5+3=8cm,
∴AC===4cm;
当C点位置如图2所示时,同理可得OM=3cm,
∵OC=5cm,
∴MC=5﹣3=2cm,
在Rt△AMC中,AC===2cm.
故选:C.
7.解:如图线段AB的垂直平分线和线段CD的垂直平分线的交点M,
即圆心的坐标是(﹣1,1),
故选:B.
8.解:①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过直径所在的直线才是它的对称轴.
故选:D.
二.填空题(共8小题,满分40分)
9.解:连接AO,
∵半径是5,CD=1,
∴OD=5﹣1=4,
根据勾股定理,
AD===3,
∴AB=3×2=6,
因此弦AB的长是6.
10.解:如图:连接OC,过O作OE⊥AB于E,交CD于F,
∵AB=1.2m,OE⊥AB,OA=1m,
∴OE=0.8m,
∵水管水面上升了0.2m,
∴OF=0.8﹣0.2=0.6m,
∴CF=m,
∴CD=1.6m.
故答案为:1.6.
11.解:过点P作PD⊥x轴于点D,连接OP,
∵A(6,0),PD⊥OA,
∴OD=OA=3,
在Rt△OPD中,
∵OP=,OD=3,
∴PD===2,
∴P(3,2).
故答案为:(3,2).
12.解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴OD==4.
故答案为4.
13.解:过点O作OD⊥AB交AB于点D,连接OA,
∵OA=2OD=2cm,
∴AD===cm,
∵OD⊥AB,
∴AB=2AD=cm.
故答案为:2.
14.解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵AB=2,
∴AE=,PA=2,
∴PE=1.
∵点D在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=.
∵⊙P的圆心是(2,a),
∴点D的横坐标为2,
∴OC=2,
∴DC=OC=2,
∴a=PD+DC=2+.
故答案为:2+.
15.解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,
如图,连接OE,OF,过O点作OH⊥EF,垂足为H,
在Rt△ADB中,∠ABC=45°,AB=,
∴AD=BD=1,即此时圆的直径为1,
∵∠EOF=2∠BAC=120°,
而∠EOH=∠FOH,
∴∠EOH=60°,
在Rt△EOH中,EH=,
∵OH⊥EF,
∴EH=FH,
∴EF=2EH=,
即线段EF长度的最小值为.
故答案为.
16.解:连接AD,AB是⊙O的直径,则∠AEB=∠ADB=90°,
∵AB=AC,∠BAC=45°,
∴∠ABE=45°,∠C=∠ABC==67.5°,AD平分∠BAC,
∴AE=BE,∠EBC=90°﹣67.5°=22.5°,DB=CD,故②正确,
∵∠ABE=45°,∠EBC=22.5°,故①正确,
∵AE=BE,
∴=,
又AD平分∠BAC,所以,即劣弧AE是劣弧DE的2倍,④正确.
∵∠EBC=22.5°,BE⊥CE,
∴BE>2EC,
∴AE>2EC,故③错误.
∵∠BEC=90°,
∴BC>BE,
又∵AE=BE,
∴BC>AE
故⑤错误.
故答案为:①②④.
三.解答题(共5小题,满分40分)
17.(1)证明:延长BO交⊙O 于F,连接DF,AD.
∵BF是直径,
∴∠BDF=90°,
∴DF⊥BD,
∵AC⊥BD,
∴AC∥DF,
∴∠CAD=∠ADF,
∴=,
∴∠COD=∠AOF,
∵∠AOB+∠AOF=180°,
∴∠AOB+∠COD=180°.
(2)解:连接AF.
由(1)可知:=,
∴AF=CD=6,
∵BF是直径,
∴∠BAF=90°,
∴BF===10,
∴⊙O的直径为10.
18.(1)证明:∵DF⊥CG,CD⊥AB,
∴∠DEB=∠BFG=90°,
∵∠DBE=∠GBF,
∴∠D=∠G,
∵∠A=∠D,
∴∠A=∠G,
∴AC=CG.
(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,
∵CA=CG,CD⊥AB,
∴AE=EG=,EC=ED=4,
∴OE=AE﹣OA=,
在Rt△OEC中,∵OC2=OE2+EC2,
∴r2=()2+42,
解得r=或(舍弃),
∴⊙O的半径为.
19.(1)证明:连接AC,如图
∵直径AB垂直于弦CD于点E,
=,
∴AC=AD,
∵过圆心O的线CF⊥AD,
∴AF=DF,即CF是AD的中垂线,
∴AC=CD,
∴AC=AD=CD.
即:△ACD是等边三角形,
∴∠FCD=30°,
在Rt△COE中,OE=OC,
∴OE=OB,
∴点E为OB的中点;
(2)解:在Rt△OCE中,AB=16,
∴OC=AB=8,
又∵BE=OE,
∴OE=4,
∴CE===4,
∴CD=2CE=8.
20.解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∴∠CEF=∠BFO=90°
∴AF=BF=x,DE=EC=2,
根据勾股定理可得:,
解得(舍弃)或,
∴BF=4,AB=2BF=8.
(2)如图2中,作CH⊥AB于H.
∵OB⊥OC,
∴∠A=∠BOC=45°,
∵AH⊥CH,
∴△ACH是等腰直角三角形,
∵AC=CH,
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∠CEF=∠EFH=∠CHF=90°,
∴四边形EFHC是矩形,
∴CH=EF,
在Rt△OEC中,∵EC=,OC=,
OE===2,
∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,
∴∠FOB=∠ECO,
∵OB=OC,
∴△OFB≌△CEO(AAS),
∴OF=EC=,
∴CH=EF=3,
∴AC=EF=6.
21.解:(1)连接OD,设⊙O的半径为r,则OE=r﹣2,
∵∠BAD=30°,
∴∠DOE=60°,
∵CD⊥AB,
∴CD=2DE,∠ODE=30°,
∴OD=2OE,即r=2(r﹣2),解得r=4;
(2)∵由(1)知r=4,BE=2,
∴OE=4﹣2=2,
∴DE===2,
∴CD=2DE=4.