11.1.3 三角形的稳定性
一.选择题
1.下列图形中具有稳定性的是( )
A.三角形 B.长方形 C.正方形 D.平行四边形
2.如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是( )
A.两点之间,线段最短 B.两点确定一条直线
C.垂线段最短 D.三角形具有稳定性
3.下列图形中,具有稳定性的是( )
A. B.
C. D.
4.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是( )
A.两点确定一条直线 B.两点之间,线段最短
C.同角的余角相等 D.三角形具有稳定性
5.下列生活实例中,利用了“三角形稳定性”的是( )
A. B.
C. D.
6.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是( )
A.三角形两边之差小于第三边
B.三角形两边之和大于第三边
C.三角形的稳定性
D.垂线段最短
7.如图,人字梯中间一般会设计一个“拉杆”,这样做的道理是( )
A.三角形具有稳定性
B.同位角相等,两直线平行
C.两点之间线段最短
D.两直线平行,同位角相等
8.能用三角形的稳定性解释的生活现象是( )
A.
B.
C.
D.
9.下列图形中,不具有稳定性的是( )
A. B.
C. D.
10.如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
二.填空题
11.下列生产和生活实例:①用人字架来建筑房屋;②用窗钩来固定窗扇;③在栅栏门上斜钉着一根木条;④商店的推拉活动防盗门等.其中,用到三角形的稳定性的有 (填写序号).
12.花楼提花机是我国古代织造技术最高成就的代表,明代《天工开物》中详细记载了花楼提花机的构造.如图所示,提花机上的一个三角形木框架,它是由三根木料固定而成,三角形的大小和形状固定不变.三角形的这个性质叫做三角形的 .
13.如图所示的自行车架设计成三角形,这样做的依据是三角形具有 .
14.随着人们物质生活的提高,手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点.为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的 .
15.如图,建高层建筑需要用塔吊来吊建筑材料,塔吊的上部是三角形结构,其中的数学原理是 .
三.解答题
16.要使下列木架稳定,可以在任意两个点之间钉上木棍,各至少需要钉上多少根木棍?
17.如图(1)扭动三角形木架,它的形状会改变吗?
如图(2)扭动四边形木架,它的形状会改变吗?
如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?
归纳:①三角形木架的形状 ,说明三角形具有
②四边形木架的形状 说明四边形没有 .
18.如图,由6条钢管铰接而成的六边形是不稳定的,请你再用三条钢管连接使之稳固(方法很多,请提供四种不同连接方法)
19.如图所示,AB,BC,CD是三根长度分别为1cm,2cm,5cm的木棒,它们之间连接处可以活动,现在A,D之间拉一根橡皮筋,请根据四边形的不稳定性思考.这根橡皮筋的最大长度可以拉到多少厘米?最短长度为多少厘米?
20.(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是 ;
(2)下列图形具有稳定性的有 个:
正方形、长方形、直角三角形、平行四边形
(3)已知四边形的四边长分别为2,3,4,5,这个四边形的四个内角的大小能否确定?
(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是: ;
(5)要使四边形木架(用4根木条钉成)不变形,至少需要加1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,如果要使一个n边形木架不变形,至少需要加 根木条固定.
2022年08月18日初数的初中数学组卷
参考答案与试题解析
一.选择题(共10小题)
1.【分析】根据三角形具有稳定性即可得出答案.
【解答】解:A.三角形具有稳定性,故本选项符合题意;
B.长方形不具有稳定性,故本选项不符合题意;
C.正方形不具有稳定性,故本选项不符合题意;
D.平行四边形不具有稳定性,故本选项不符合题意.
故选:A.
【点评】本题考查了三角形的稳定性和平行四边形、长方形、正方形不具有稳定性.
2.【分析】根据点A、B、O组成一个三角形,利用三角形的稳定性解答.
【解答】解:一扇窗户打开后,用窗钩将其固定,正好形成三角形的形状,
所以,主要运用的几何原理是三角形的稳定性.
故选:D.
【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.
3.【分析】根据三角形具有稳定性进行解答即可.
【解答】解:A、图中没有三角形,不具有稳定性,故此选项不符合题意;
B、图中均是三角形,具有稳定性,故此选项符合题意;
C、图中含有四边形,不具有稳定性,故此选项不符合题意;
D、图中含有四边形,不具有稳定性,故此选项不符合题意.
故选:B.
【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.
4.【分析】根据三角形的稳定性,可直接选择.
【解答】解:加上DB后,原图形中具有△ADB了,故这种做法的数学根据是三角形的稳定性.
故选:D.
【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.
5.【分析】根据三角形具有稳定性判断即可.
【解答】解:A、不是利用“三角形稳定性”,不符合题意;
B、利用了“三角形稳定性”,符合题意;
C、不是利用“三角形稳定性”,不符合题意;
D、不是利用“三角形稳定性”,不符合题意;
故选:B.
【点评】本题考查的是三角形的性质,熟记三角形具有稳定性是解题的关键.
6.【分析】钉在墙上的方法是构造三角形支架,因而应用了三角形的稳定性.
【解答】解:这种方法应用的数学知识是:三角形的稳定性,
故选:C.
【点评】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.
7.【分析】根据三角形的稳定性解答即可.
【解答】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,
故选:A.
【点评】此题考查了三角形的性质,关键是根据三角形的稳定性解答.
8.【分析】根据各个生活现象判断所运用的原理,判断即可.
【解答】解:A、该生活现象运用的是两点确定一条直线,不符合题意;
B、该生活现象运用的是两点之间,线段最短,不符合题意;
C、该生活现象运用的是三角形的稳定性,符合题意;
D、该生活现象运用的是垂线段最短,不符合题意;
故选:C.
【点评】本题考查的是三角形的性质,熟记三角形具有稳定性是解题的关键.
9.【分析】根据三角形具有稳定性进行解答即可.
【解答】解:A、不具有稳定性,故此选项符合题意;
B、具有稳定性,故此选项不符合题意;
C、具有稳定性,故此选项不合题意;
D、具有稳定性,故此选项不符合题意;
故选:A.
【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.
10.【分析】根据三角形具有稳定性解答即可.
【解答】解:为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的稳定性.
故选:C.
【点评】此题考查三角形的稳定性问题,能够运用数学知识解释生活中的现象.
二.填空题(共5小题)
11.【分析】根据生活常识对各小题进行判断即可得解.
【解答】解:①用“人”字梁建筑屋顶,是利用三角形具有稳定性,符合题意;
②用窗钩来固定窗扇,是利用三角形具有稳定性,符合题意;
③在栅栏门上斜钉着一根木条,是利用三角形具有稳定性,符合题意;
④商店的推拉防盗铁门,是用四边形的不稳定性,不是用三角形具有稳定性,不符合题意;
综上所述:用到三角形稳定性的是①②③.
故答案为:①②③.
【点评】本题考查了三角形的稳定性,比较简单,要熟悉生活中的物品的形状.
12.【分析】根据三角形的稳定性可知,三根木条钉成一个三角形框架的大小和形状固定不变,据此填空即可.
【解答】解:根据三角形的稳定性可知,三根木条钉成一个三角形框架的大小和形状固定不变,
故答案为:稳定性.
【点评】本题考查了三角形的稳定性.当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.这一特性主要应用在实际生活中.
13.【分析】根据三角形具有稳定性解答.
【解答】解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,
故答案为:稳定性.
【点评】本题考查的是三角形的性质,掌握三角形具有稳定性是解题的关键.
14.【分析】利用三角形的稳定性的性质直接回答即可.
【解答】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,
故答案为:三角形的稳定性.
【点评】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.
15.【分析】根据三角形具有稳定性解答.
【解答】解:根据三角形具有稳定性,主要是应用了三角形的稳定性.
故答案为:三角形具有稳定性.
【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.
三.解答题(共5小题)
16.【分析】根据三角形具有稳定性可得答案.
【解答】解:图①四边形木架至少需要钉上1根木棍;
图②五边形木架至少需要钉上2根木棍;
图③六边形木架至少需要钉上3根木棍.
【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.
17.【分析】①根据三角形的性质进行解答即可;
②根据四边形的性质进行解答即可.
【解答】解:①由三角形具有稳定性知,三角形木架的形状不会改变,这说明三角形具有稳定性.
故答案为:不会改变,稳定性;
②四边形木架的形状是四边形,四边形具有不稳定性.
故答案为:会改变,稳定性.
【点评】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.
18.【分析】根据三角形具有稳定性,用连接的钢管把六边形分成三角形即可.
【解答】解:如图所示.
.
【点评】本题考查了三角形具有稳定性,熟记性质是解题的关键.
19.【分析】当A、B、C、D在同一条直线上且B,C在A,D之间时,AD最长;当当A、B、C、D在同一条直线上且A,B在C,D之间时,AD最短.
【解答】解:由于B、C两处可以转动,当A、B、C、D形成一条线段时,AD最长,它等于1+2+5=8(cm);
当A、B、C拉直,此时B、A落在CD上时,AD最小,它等于5﹣1﹣2=2(cm).
答:这根橡皮筋的最大长度可以拉到8厘米,最短长度为2厘米.
【点评】本题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.
20.【分析】(1)利用三角形的稳定性进行解答;
(2)只有三角形具有稳定性,其他图形不具有稳定性;
(3)根据四边形的不稳定形可以知道四边形的内角的变化;
(4)根据三角形的稳定性进行判断即可;
(5)根据三角形具有稳定性,需要的木条数等于过多边形的一个顶点的对角线的条数.
【解答】解:(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是三角形的稳定性;
(2)下列图形具有稳定性的有直角三角形一个:
正方形、长方形、直角三角形、平行四边形
(3)因为四边形具有不稳定性,所以这个四边形的四个内角的大小不能确定;
(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是:方法一和方法二;
(5)过n边形的一个顶点可以作(n﹣3)条对角线,把多边形分成(n﹣2)个三角形,
所以,要使一个n边形木架不变形,至少需要(n﹣3)根木条固定.
故答案为:三角形的稳定性;一;方法一和方法二;(n﹣3).
【点评】本题考查了三角形的稳定性以及多边形的对角线的问题,考虑把多边形分成三角形是解题的关键.