【夺冠冲刺】第一章 丰富的图形世界 阶段性复习精选精练(含解析)

文档属性

名称 【夺冠冲刺】第一章 丰富的图形世界 阶段性复习精选精练(含解析)
格式 doc
文件大小 1.3MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-08-19 18:54:46

图片预览

文档简介

中小学教育资源及组卷应用平台
第1章 丰富的图形世界 【夺冠冲刺】2022-2023学年七年级数学上册阶段性复习精选精练(北师大版)
一、单选题
1.下列展开图中,是正方体展开图的是( )
A. B.
C. D.
2.如图是正方体的表面展开图,则与“话”字相对的字是(  )
A.跟 B.党 C.走 D.听
3.将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是( )
A.②③ B.①⑥ C.①⑦ D.②⑥
4.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是( )
A. B. C. D.
5.若一个棱柱有7个面,则它是( )
A.七棱柱 B.六棱柱 C.五棱柱 D.四棱柱
6.下列几何体中,主视图为矩形的是( )
A. B.
C. D.
7.①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )
A.①③ B.②③ C.③④ D.①④
8.在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形是(  )
A.① B.② C.③ D.④
9.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是( )
A.点动成线 B.线动成面 C.面动成体 D.面与面相交得到线
10.如图,该几何体的截面形状是( )
A.三角形 B.长方形 C.圆形 D.五边形
二、填空题
11.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是_____.
12.观察下列由长为1,的小正方体摆成的图形,如图①所示共有1.个小立方体,其中1个看得见,0个看不见:如图②所示:共有8.个小立方体,其中7个看得见,1个看不见:如图③所示:共有27个小立方体,其中19个看得见,8个看不见…按照此规律继续摆放:
(1)第④个图中,看不见的小立方体有_________个:
(2)第n个图中,看不见的小立方体有____________个.
13.如图,一个正方体形状的木块,棱长为2米,若沿正方体的三个方向分别锯成3份、4份和5份,得到若干个大大小小的长方体木块,则所有这些长方体木块的表面积和是_______平方米.
14.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,那么应剪去______ 填一个字母即可
15.如图是正方体的表面展开图,则原正方体“4”与相对面上的数字之和是________________.
16.将一根长4m的圆柱体木料锯成2段(2段都是圆柱体),表面积增加60dm2,这根木料的体积是______m3.
17.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.
三、解答题
18.如图,第一行的图形绕虚线旋转一周,能形成第二行的某个几何体,用线连起来.
19.如图,是一个几何体的表面展开图.
(1)该几何体是________;
A.正方体 B.长方体 C.三棱柱 D.四棱锥
(2)求该几何体的体积.
20.如图1是墨水瓶包装盒实物图,图2是粉笔包装盒实物图,图3是墨水瓶包装盒展开图,图4是粉笔包装盒展开图,尺寸数据如下(单位:cm.以下问题结果用含a,b,c的式子表示,其中阴影部分为内部粘贴角料,计算纸片面积时内部粘贴角料忽略不计):
(1)做一个墨水瓶包装盒需要纸片的面积为___,做一个粉笔包装盒需要纸片的面积为___;(直接写出答案)
(2)做一个墨水瓶包装盒和一个粉笔包装盒共用纸片多少平方厘米?
(3)做三个粉笔包装盒比做两个墨水瓶包装盒多用多少平方厘米纸片?
21.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:
(1)小明总共剪开了  条棱.
(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.
(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.
参考答案:
1.C
【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.
【详解】解:根据正方体展开图特点可得C答案可以围成正方体,
故选:C.
【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.
2.C
【分析】根据正方体表面展开图的特征进行判断即可.
【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,
“话”与“走”是对面,
故答案为:C.
【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.
3.A
【分析】利用正方体及其表面展开图的特点解题.
【详解】A. 剪去②③后,恰好能折成一个正方体,符合题意;
B. 剪去①⑥后,不能折成一个正方体,不符合题意;
C. 剪去 ①⑦后,不能折成一个正方体,不符合题意;
D. 剪去 ②⑥后,不能折成一个正方体,不符合题意.
故选:A
【点睛】本题考查了正方体的展开图及学生的空间想象能力,正方体展开图规律:十一种类看仔细,中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃.
4.B
【分析】观察长方体,可知第一部分所对应的几何体在长方体中,上面有二个正方体,下面有二个正方体,再在BC选项中根据图形作出判断.
【详解】解:由长方体和第一部分所对应的几何体可知,
第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.
故选:B.
【点睛】本题考查了认识立体图形,找到长方体中,第一部分所对应的几何体的形状是解题的关键.
5.C
【分析】根据棱柱有两个底面求出侧面数,即可选择.
【详解】棱柱必有两个底面,则剩下7-2=5个面是侧面,所以为五棱柱.
故选C
【点睛】本题考查认识立体图形棱柱,解题的关键是知道棱柱必有两个底面.
6.C
【分析】根据常见几何体的主视图,依次判断即可.
【详解】A.该三棱锥的主视图为中间有条线段的三角形,故不符合题意;
B.该圆锥的主视图为三角形,故不符合题意;
C.该圆柱的主视图为矩形,故符合题意;
D.该圆台的主视图为梯形,故不符合题意;
故选:C.
【点睛】本题考查常见几何体的三视图,掌握常见几何体的三视图是解答本题的关键.
7.D
【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能 构成长方体,①④组合符合题意
【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意
故选D
【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.
8.A
【分析】根据长方体的相对面形状、大小完全相同即可找出剪去的面.
【详解】如图所示:
①与⑤相隔一个面,④与⑤也相隔一个面,
因为④与⑤的形状、大小相同,而①与⑤的形状、大小不同,
所以⑤的相对面只能是④,
故剪去①,剩下的图形可以折叠成一个长方体.
故选A.
【点睛】本题考查的是长方体的表面展开图,根据长方体的表面展开图中相对面的找法即可作出判断.
9.B
【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.
【详解】解:滚筒看成是线,滚动的过程成形成面,
故选:B.
【点睛】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.
10.B
【分析】根据几何体的形状是长方体,进行如图截面即可判断形状.
【详解】解:根据题意得:该几何体的截面形状是长方形.
故选:B
【点睛】本题考查了截一个几何体的应用,目的是培养学生的空间想象能力和动手操作能力.
11.我
【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.
【详解】由图1可得:“中”和“的”相对,“国”和“我”相对,“梦”和“梦”相对,
由图2可得:该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格时,“国”在下面,则这时小正方体朝上一面的字是“我”.
故答案为:我.
【点睛】本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.考查了学生空间想象能力.
12. 27
【分析】(1)根据规律可以得第④个图中,看不见的小立方体有27个.
(2)由题意可知,共有小立方体个数为序号数×序号数×序号数,看不见的小正方体的个数=(序号数-1)×(序号数-1)×(序号数-1),看得见的小立方体的个数为共有小立方体个数减去看不见的小正方体的个数.
【详解】解:∵当第1个图中,1=1,0=(1-1)3=03;
当第2个图中,8=23,1=13=(2-1)3;
当第3个图中,27=33,8=(3-1)3=23;
当第4个图中,64=43,27=(4-1)3=33;
当第5个图中,125=53,64=(5-1)3=43;
∴当第n个图中,看不见的小立方体的个数为(n-1)3个.
故答案为:(1)27;(2)(n-1)3.
【点睛】本题考查的是立体图形,分别根据排成的立方体的高为1个立方体、2个立方体、3个立方体、4个立方体时看见的正方体与看不见的正方体的个数,找出规律即可进行解答.
13.96
【分析】根据题干分析可得:每切一刀,就增加2个正方体的面的面积,由此只要求出一共切了几刀,即可求出一共增加了几个正方体的面的面积,再加上原来正方体的表面积,就是这60块长方体的表面积之和.沿水平方向将它锯成3片,是切割了2刀,同理,每片又锯成4长条,是切了3刀,每条又锯成5小块,是切了4刀,所以一共切了2+3+4=9刀,所以表面积一共增加了9×2=18个正方体的面,由此即可解答问题.
【详解】解:沿水平方向将它锯成3片,是切割了2刀,同理,每片又锯成4长条,是切了3刀,每条又锯成5小块,是切了4刀,所以一共切了2+3+4=9刀,
所以这60个小长方体的表面积之和是:2×2×6+9×2×2×2=24+72=96(平方米)
故答案是96.
【点睛】此题考查了规则立体图形的表面积,解答此题的关键是明确沿纵向或横向每切一次,都会增加2个原正方体的面的面积.
14.或或(填一个即可)
【分析】根据正方体的平面展开图的特点即可得.
【详解】解:由正方体的平面展开图的特点可知,剪去或或后,余下的部分恰好能折成一个正方体,
故答案为:或或(填一个即可).
【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.
15.
【分析】根据正方体的展开图,原正方体“4”的相对面上的数字为3,再把两数相加即可得出答案.
【详解】解:∵正方体的展开图,原正方体“4”的相对面上的数字为3,
∴原正方体“4”与相对面上的数字之和是7.
故答案为:7.
【点睛】本题考查了正方体的展开图,解决本题的关键是掌握正方体展开图的特点并正确运用其特点得到相对面上的数字.
16.1.2
【分析】将一根长4m的圆柱体木料锯成2段,增加两个底面,又知表面积增加60dm2,由此求出这根木料的底面积,根据圆柱的体积公式即可计算.
【详解】解:60dm2=0.6m2
0.6÷2=0.3(m2)
0.3×4=1.2(m3),
故这根木料的体积是1.2m3.
故答案为:1.2.
【点睛】本题考查了计算圆柱的体积.解题的关键是掌握圆柱的体积公式.
17.26
【分析】由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;
【详解】由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,
其小正方块分布情况如下:
那么共有7+2+1=10个几何体组成.
若搭成一个大长方体,共需3×4×3=36个小立方体,
所以还需36-10=26个小立方体,
故答案为:26.
【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大长方体共有多少个小正方体.
18.答案见解析
【分析】根据旋转的特点和各几何图形的特性判断即可.
【详解】连线如图:
【点睛】本题考查几何体的旋转构成特点,解题的关键是熟知旋转和几何体的特点.
19.(1)C;(2)4
【分析】(1)本题根据展开图可直接得出答案.
(2)本题根据体积等于底面积乘高求解即可.
【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C.
(2)由图已知:该几何体底面积为等腰三角形面积;该几何体的高为2;
故该几何体体积底面积高.
【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.
20.(1)(2ab+2ac+2bc)cm2;(6ab+6ac+8bc)cm2
(2)(8ab+8ac+10bc)平方厘米
(3)做三个粉笔包装盒比做两个墨水瓶包装盒多用(14ab+14ac+20bc)平方厘米纸片.
【分析】(1)将墨水瓶包装盒展开图折叠,可得长、宽、高分别为a cm、b cm、c cm;将粉笔包装盒展开图折叠,可得长、宽、高分别为1.5a cm、2b cm、2c cm;再根据长方体的表面积公式计算即可;
(2)利用(1)的结论列式计算解答即可;
(3)利用(1)的结论列式计算解答即可.
(1)
解:将墨水瓶包装盒展开图折叠,可得长、宽、高分别为a cm、b cm、c cm,
故做一个墨水瓶包装盒需要纸片的面积为:(2ab+2ac+2bc)cm2;
将粉笔包装盒展开图折叠,可得长、宽、高分别为1.5a cm、2b cm、2c cm,
故做一个粉笔包装盒需要纸片的面积为:2×1.5a×2b+2×1.5a×2c+2×2b×2c=(6ab+6ac+8bc)cm2;
故答案为:(2ab+2ac+2bc)cm2;(6ab+6ac+8bc)cm2;
(2)
解:做一个墨水瓶包装盒和一个粉笔包装盒共用纸片:
(2ab+2ac+2bc)+(6ab+6ac+8bc)
=(8ab+8ac+10bc)cm2;
(3)
解:3(6ab+6ac+8bc)-2(2ab+2ac+2bc)
=18ab+18ac+24bc-4ab-4ac-4bc
=14ab+14ac+20bc(cm2),
即做三个粉笔包装盒比做两个墨水瓶包装盒多用(14ab+14ac+20bc)平方厘米纸片.
【点睛】本题考查了长方体的平面展开图,长方体的表面积公式以及整式的混合运算,解题关键是掌握立体图形与平面展开图之间的关系,从图中得到长方体的长、宽、高.
21.(1)8;(2)见解析;(3)200000立方厘米
【分析】1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;
(2)根据长方体的展开图的情况可知有4种情况;
(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积.
【详解】解:(1)由图可得,小明共剪了8条棱,
故答案为:8.
(2)如图,粘贴的位置有四种情况如下:
(3)∵长方体纸盒的底面是一个正方形,
∴可设底面边长acm,
∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,
∴4×20+8a=880,
解得a=100,
∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.
【点睛】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
试卷第1页,共3页
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)