中小学教育资源及组卷应用平台
第一章 勾股定理
一、单选题
1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9 B.6 C.4 D.3
2.如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是( )
A. B.3 C.3 D.3
3.观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式( )
A. B.
C. D.
4.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )
A.2 B.3 C.4 D.5
5.如图,已知中,,F是高和的交点,,,则线段的长度为( )
A. B.2 C. D.1
6.将一根长25cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是( )
A.0≤h≤13 B.12≤h≤13 C.11≤h≤12 D.13≤h≤25
7.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是( )
A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12
C.x2+1002=(x+68)2 D.x2+(x+68)2=1002
8.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )
A. B.2 C.2 D.3
9.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是( )
A.厘米 B.10厘米 C.厘米 D.8厘米
10.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是( )
A.6 B.8 C.9 D.15
二、填空题
11.《九章算术》中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇.根据勾股定理可列得方程为______.
12.如图,OE⊥AB于E,若⊙O的半径为10,OE=6,则AB=_______.
13.学习完《勾股定理》后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为______米.
14.“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.
15.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.
16.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.
17.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC=10m,已知两棵树的水平距离为6m,则树甲原来高_____.
三、解答题
18.已知:在中,点在直线上,点在同一条直线上,且,
【问题初探】(1)如图1,若平分,求证:.
请依据以下的简易思维框图,写出完整的证明过程.
【变式再探】(2)如图2,若平分的外角,交的延长线于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由.
【拓展运用】(3)如图3,在的条件下.若,求的长度.
19.如图,笔直的公路上A、B两点相距22km,C、D为公交公司两停车场,CA⊥AB于点A,DB⊥AB于点B,已知CA=6km,DB=16km,现在要在公路的AB段上建一个加油站M,使得C、D公交公司两停车场到加油站M的距离CM=DM,则加油站M应建在离B点多远处?
20.如图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.
21.如图,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
参考答案:
1.D
【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
【详解】解:由题意可知:中间小正方形的边长为:,
每一个直角三角形的面积为:,
,
,
或(舍去),
故选:D.
【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.
2.B
【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出∠AFB=90°,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长.
【详解】解:
AB=AC,
,
故选B.
【点睛】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.
3.C
【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案.
【详解】标记如下:
∵,
∴(a﹣b)2=a2+b2﹣4
=a2﹣2ab+b2.
故选:C.
【点睛】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键.
4.B
【分析】该题可以自己动手进行拼接,根据勾股定理得知①的直角边为1和1,斜边为,拼接时要依据重合的边要相等,然后根据轴对称图形的概念进行判断即可.
【详解】在左侧构成轴对称图形如图:
在下方构成轴对称图形如图:
在右侧构成轴对称图形如图:
【点睛】本题考查勾股定理,图形的拼接以及轴对称图形的判断,掌握轴对称图形的概念是解题的关键.
5.D
【分析】先证明△BDF≌△ADC,得到BF=AC=,再根据勾股定理即可求解.
【详解】解:∵和是△ABC的高线,
∴∠ADB=∠ADC=∠BEC=90°,
∴∠DBF+∠C=90°,∠CAD+∠C=90°,
∴∠DBF=∠CAD,
∵,
∴∠BAD=45°,
∴BD=AD,
∴△BDF≌△ADC,
∴BF=AC=,
在Rt△BDF中,DF=.
故选:D
【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF≌△ADC是解题关键.
6.B
【分析】根据杯子内筷子长度的取值范围得出杯子外面筷子长度的取值范围,即可得出答案.
【详解】解:∵将一根长为25cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,
∴在杯子中筷子最短是等于杯子的高,最长是等于以杯子高和底面直径为直角边的直角三角形的斜边长度,
∴当杯子中筷子最短是等于杯子的高时长度为12cm,
最长时等于以杯子高和底面直径为直角边的直角三角形的斜边长度是:,
∴h的取值范围是:25 13 h 25 12,
即12 h 13,
故选:B.
【点睛】此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.
7.D
【分析】1丈=100寸,6尺8寸=68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.
【详解】解:1丈=100寸,6尺8寸=68寸.
设门的宽为x寸,则门的高度为(x+68)寸,
依题意得:x2+(x+68)2=1002.
故选:D.
【点睛】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键.
8.A
【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.
【详解】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,
在Rt△AHB中,
∵∠ABC=60°,AB=2,
∴BH=1,AH=,
在Rt△AHC中,∠ACB=45°,
∴AC=,
∵点D为BC中点,
∴BD=CD,
在△BFD与△CKD中,
,
∴△BFD≌△CKD(AAS),
∴BF=CK,
延长AE,过点C作CN⊥AE于点N,
可得AE+BF=AE+CK=AE+EN=AN,
在Rt△ACN中,AN<AC,
当直线l⊥AC时,最大值为,
综上所述,AE+BF的最大值为.
故选:A.
【点睛】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.
9.B
【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.
【详解】把圆柱沿着点A所在母线展开,如图所示,
作点A的对称点B,
连接PB,
则PB为所求,
根据题意,得PC=8,BC=6,
根据勾股定理,得PB=10,
故选B.
【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.
10.D
【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.
【详解】解:如图,将台阶展开,
因为AC=3×3+1×3=12,BC=9,
所以AB2=AC2+BC2=225,
所以AB=15,
所以蚂蚁爬行的最短线路为15.
故选:D.
【点睛】本题考查了勾股定理的应用,掌握勾股定理的应用并能得出平面展开图是解题的关键.
11.
【分析】设甲、乙二人出发后相遇的时间为x ,然后利用勾股定理列出方程即可.
【详解】解:设经 x秒二人在C处相遇,这时乙共行 AC =3x,甲共行AB +BC =7x,
∵AB =10,
∴ BC =7x -10,
又 ∵∠A =90°,
∴BC2= AC2 + AB2,
∴(7x -10)2=(3x)2+102,
故答案是:(7x -10)2= (3x)2+102.
【点睛】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.
12.16
【分析】连接,由垂径定理可得,在中利用勾股定理即可求得的长,进而求得.
【详解】解:连接,
∵OE⊥AB于E,
∴,
在中,,OE=6,
∴,
∴,
故答案为:
【点睛】本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.
13.7.5;
【分析】旗杆、拉直的绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.
【详解】
解:如图,设旗杆的长度为xm,则绳子的长度为:(x+1)m,
在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,
解得:x=7.5,
∴旗杆的高度为7.5m,
故答案为7.5.
【点睛】本题考查的是勾股定理的应用,根据题意得出直角三角形是解答此题的关键.
14.127
【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.
【详解】解:∵第一代勾股树中正方形有1+2=3(个),
第二代勾股树中正方形有1+2+22=7(个),
第三代勾股树中正方形有1+2+22+23=15(个),
......
∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),
故答案为:127.
【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.
15.0.8
【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可.
【详解】
解:在Rt△ABO中,根据勾股定理知,A1O= =4(m),
在Rt△ABO中,由题意可得:BO=1.4(m),
根据勾股定理知,AO=
=4.8(m),
所以AA1=AO-A1O=0.8(米).
故答案为0.8.
【点睛】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
16.9.
【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.
【详解】在Rt△ABC中:
∵∠CAB=90°,BC=17米,AC=8米,
∴AB===15(米),
∵CD=10(米),
∴AD==6(米),
∴BD=AB﹣AD=15﹣6=9(米),
答:船向岸边移动了9米,
故答案为:9.
【点睛】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
17.(4+6)m
【分析】过C作CD⊥AB于D,由题意知BC=10,CD=6,根据勾股定理可得BD=8,从而得到AD的长,再利用勾股定理可得AC的长,即可得到树原来的高度.
【详解】解:如图作CD⊥AB交AB延长线于D,
由题意知BC=10m,CD=6m,
根据勾股定理得:BD=8m,
∵AB=4m,
∴AD=8+4=12m,
AC===6m,
∴这棵数原来的高度=(4+6)m,
故答案为:(4+6)m.
【点睛】此题考查了勾股定理在实际生活中的应用,解题的关键是添加辅助线,正确的计算AC的长.
18.(1)见解析 (2);理由见解析 (3)
【分析】(1)根据ASA证明得BE=BC,得,进一步可得结论;
(2)根据ASA证明得BE=BC,得;
(3)连结,分别求出∠AEB=∠ADE=∠ACB=22.5°,再证明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得结论.
【详解】解:(1)证明平分,
在和中,
,
;
.
理由:平分,
在和中,
,
.
连结,
,
,
,
且,
由得,
,
,
.
【点睛】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD是解答此题的关键.
19.6km
【分析】根据CM=DM,CA⊥AB于点A,DB⊥AB于点B,可得∠A =∠B=90°,由勾股定理得AC2+AM2=BM2+BD2,设BM=xkm,AM=(22-x)km, 可得方程,解之即可.
【详解】解:∵使得C、D公交公司两停车场到加油站M的距离相等,
∴CM=DM,
∵CA⊥AB于点A,DB⊥AB于点B,
∴∠A =∠B=90°,
∴AC2+AM2=CM2,BM2+BD2=MD2,
∴AC2+AM2=BM2+BD2,
设BM=xkm,AM=(22-x)km,CA=6km,DB=16km,
∴,
解得,
加油站M应建在离B点6km远.
【点睛】本题考查勾股定理应用,拓展一元一次方程,掌握勾股定理使用条件,一元一次方程的解法是解题关键.
20.216平方米
【分析】连接AC,根据勾股定理计算AC,根据勾股定理的逆定理判定三角形ABC是直角三角形,根据面积公式计算即可.
【详解】连接AC,∵AD=12,CD=9,∠ADC=90°,
∴AC==15,
∵AB=39,BC=36,AC=15
∴,
∴∠ACB=90°,
∴这块空地的面积为:==216(平方米),
故这块草坪的面积216平方米.
【点睛】本题考查了勾股定理及其逆定理,熟练掌握定理并灵活运用是解题的关键.
21.北偏西45°(或西北)
【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海 天”号航行方向.
【详解】解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,
∵182+242=302,
∴△RPQ是直角三角形,
∴∠RPQ=90°,
∵“远航”号沿东北方向航行,即沿北偏东45°方向航行,
∴∠RPS=45°,
∴“海天”号沿北偏西45°(或西北)方向航行.
【点睛】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.
试卷第1页,共3页
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)