2022-2023学年人教版八年级数学上册《11.2与三角形有关的角》同步练习题(附答案)
一.选择题
1.如果三角形三个内角分别是x°,x°,y°,则下列结论正确的是( )
A.x+2y=180 B.2x+y=180 C.2x﹣y=180 D.3x+y=180
2.如图,在△ABC中,∠B=70°,沿图中虚线EF翻折,使得点B落在AC上的点D处,则∠1+∠2等于( )
A.160° B.150° C.140° D.110°
3.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )
A.42° B.46° C.52° D.56°
4.一个三角形两个内角的度数分别如下,这个三角形是等腰三角形的是( )
A.40°,70° B.30°,90° C.60°,50° D.50°,20°
5.如果∠A=∠B﹣∠C,那么△ABC是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
6.在△ABC中,∠A:∠B:∠C=3:4:7,则△ABC的形状是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
7.如图,在Rt△AOB中,∠O=90°,C为AO上一点,且不与A,O重合,则x可能是( )
A.10° B.20° C.30° D.40°
8.如图,点C是∠BAD内一点,连CB、CD,∠A=80°,∠B=10°,∠D=40°,则∠BCD的度数是( )
A.110° B.120° C.130° D.150°
9.如图,在△ABC中,∠A=45°,△ABC的外角∠CBD=75°,则∠C的度数是( )
A.30° B.45° C.60° D.75°
10.如图,BP是△ABC中∠ABC的平分线,CP是△ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=( )
A.70° B.80° C.90° D.100°
11.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )
A.90° B.110° C.100° D.120°
12.如图,已知C,A,G三点共线,C,B,H三点共线,2∠CAD=∠BAD,2∠CBD=∠ABD,∠GAE=2∠BAE,∠EBH=2∠EBA,则∠D和∠E的关系满足( )
A.2∠E+∠D=320° B.2∠E+∠D=340°
C.2∠E+∠D=300° D.2∠E+∠D=360°
13.下列说法中错误的是( )
A.在△ABC中,若∠A:∠B:∠C=2:2:4,则△ABC为直角三角形
B.在△ABC中,若∠A=∠B﹣∠C,则△ABC为直角三角形
C.在△ABC中,若∠A=∠B=∠C,则△ABC为直角三角形
D.在△ABC中,∠A=∠B=2∠C,则△ABC为直角三角形
二.填空题
14.如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=110°,则∠A的度数是 度.
15.如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系 .
16.如图,将纸片△ABC沿DE折叠,使点A落在BE边上的点A'处,若∠A=18°,则∠1= .
17.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠ACB的度数是 °.
18.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为 .
19.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).当△ABC为“灵动三角形”时,则∠OAC的度数为 .
三.解答题
20.如图,在△ABC中,AD平分∠BAC,AE⊥BC,若∠BAD=40°,∠C=70°,求∠DAE的度数.
21.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.
∠MOQ=90°,点A,B分别在射线OM、OQ上运动(不与点O重合).
(1)如图1,AI平分∠BAO,BI平分∠ABO,若∠BAO=40°,求∠AIB的度数.
(2)如图2,AI平分∠BAO,BC平分∠ABM,BC的反向延长线交AI于点D.
①若∠BAO=40°,则∠ADB= °;
②点A、B在运动的过程中,∠ADB是否发生变化,若不变,试求∠ADB的度数;若变化,请说明变化规律.
23.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.
24.在一个三角形中,如果一个内角是另一个内角的3倍,这样的三角形我们称之为“三倍角三角形”.例如,三个内角分别为120°,40°,20°的三角形是“三倍角三角形”.
(1)△ABC中,∠A=35°,∠B=40°,△ABC是“三倍角三角形”吗?为什么?
(2)若△ABC是“三倍角三角形”,且∠B=60°,求△ABC中最小内角的度数
参考答案
一.选择题
1.解:∵三角形三个内角分别是x°,x°,y°,
∴x+x+y=180(三角形的内角和等于180°),
∴2x+y=180.
故选:B.
2.解:∵∠B=70°,
∴∠BEF+∠BFE=110°,
∵翻折,
∴∠BEF=∠DEF,∠BFE=∠DFE,
∴∠BED+∠BFD=2(∠BEF+∠BFE)=2×110°=220°,
∴∠1+∠2=180°×2﹣220°=140°,
故选:C.
3.解:
∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,
∴∠D=∠B=28°,
∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,
∴∠1=∠B+∠2+∠D,
∴∠1﹣∠2=∠B+∠D=28°+28°=56°,
故选:D.
4.解:A、第三个角为180°﹣40°﹣70°=70°,三角形中有两个角都等于70°,所以三角形为等腰三角形,所以A选项符合题意;
B、第三个角为180°﹣30°﹣90°=60°,三角形中没有角相等,所以三角形不为等腰三角形,所以B选项不符合题意;
C、第三个角为180°﹣60°﹣50°=70°,三角形中没有角相等,所以三角形不为等腰三角形,所以C选项不符合题意;
D、第三个角为180°﹣50°﹣20°=110°,三角形中没有角相等,所以三角形不为等腰三角形,所以D选项不符合题意.
故选:A.
5.解:因为∠A+∠B+C=180°,
且∠A=∠B﹣∠C,
所以∠B﹣∠C+∠B+C=180°,
所以∠B=90°,
所以△ABC是直角三角形.
故选:C.
6.解:设∠A、∠B、∠C分别为3k、4k、7k,
∵3k+4k=7k,
∴∠A+∠B=∠C,
∵∠A+∠B+∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形.
故选:C.
7.解:∵∠BCA=∠O+∠OBC,∠O=90°,
∴90°<6x<180°,
∴15°<x<30°,
故选:B.
8.解:延长BC交AD于E,
∵∠BED是△ABE的一个外角,∠A=80°,∠B=10°,
∴∠BED=∠A+∠B=90°,
∵∠BCD是△CDE的一个外角
∴∠BCD=∠BED+∠D=130°,
故选:C.
9.解:∵∠A=45°,△ABC的外角∠CBD=75°,
∴∠C=∠CBD﹣∠A=75°﹣45°=30°,
故选:A.
10.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∵∠ABP=20°,∠ACP=50°,
∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,
∴∠A=∠ACM﹣∠ABC=60°,
∠ACB=180°﹣∠ACM=80°,
∴∠BCP=∠ACB+∠ACP=130°,
∵∠PBC=20°,
∴∠P=180°﹣∠PBC﹣∠BCP=30°,
∴∠A+∠P=90°,
故选:C.
11.解:设三个外角的度数分别为2k,3k,4k,
根据三角形外角和定理,可知2k°+3k°+4k°=360°,得k=40°,
所以最小的外角为2k=80°,
故最大的内角为180°﹣80°=100°.
故选:C.
12.解:设∠CAD=x,∠CBD=y,则∠BAD=2x,∠ABD=2y,
∴∠GAB=180°﹣3x,∠HBA=180°﹣3y,
∵∠GAE=2∠BAE,∠EBH=2∠EBA,
∴∠BAE=60°﹣x,∠EBA=60°﹣y,
∴∠D=180°﹣2(x+y),∠E=180°﹣(60°﹣x)﹣(60°﹣y)=60°+(x+y),
∴2∠E+∠D=300°,
故选:C.
13.解:A、在△ABC中,因为∠A:∠B:∠C=2:2:4,所以∠C=90°,∠A=∠B=45°,△ABC为直角三角形,本选项不符合题意.
B、在△ABC中,因为∠A=∠B﹣∠C,所以∠B=90°,△ABC为直角三角形,本选项不符合题意.
C、在△ABC中,因为∠A=∠B=∠C,所以∠C=90°,∠B=60°,∠A=30°,△ABC为直角三角形,本选项不符合题意.
D、在△ABC中,因为∠A=∠B=2∠C,所以∠A=∠B=72°,∠C=36°,△ABC不是直角三角形,本选项符合题意,
故选:D.
二.填空题
14.解:如图,
延长B'E,C'F,交于点D,
由折叠可得,∠B=∠B',∠C=∠C',
∴∠A=∠D,
又∵∠1+∠2=110°,
∴∠AED+∠AFD=360°﹣110°=250°,
∴四边形AEDF中,∠A=(360°﹣250°)=55°,
故答案为:55.
15.解:∵∠BFA=∠PAC+∠P,∠BFA=∠PBC+∠C,
∴∠PAC+∠P=∠PBC+∠C,
∵∠CAD和∠CBD的平分线相交于点P,
∴∠PAC=∠CAD,∠PBC=∠CBD,
∴∠CAD+∠P=∠CBD+∠C①,
同理:∠CAD+∠D=∠CBD+∠P②,
①﹣②,得∠P﹣∠D=∠C﹣∠P,
整理得,2∠P=∠D+∠C,
故答案为:2∠P=∠D+∠C.
16.解:∵纸片△ABC沿DE折叠,使点A落在BE边上的点A'处,
∴∠DA′A=∠A=18°,
∴∠1=∠DA′A+∠A=36°.
故答案为36°.
17.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=∠ABN,∠BAC=∠BAO,
∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,
∵∠MON=90°,
∴∠AOB=90°,
∴∠C=×90°=45°.
故答案为:45.
18.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
∴(∠A+∠ABC)=∠ABC+∠A1,
∴∠A1=∠A,
同理理可得∠A2=∠A1,∠A3=∠A2,……
则∠A2021=∠A1=.
故答案为:.
19.解:设∠OAC=x则∠BAC=90°﹣x,∠ACB=60°+x,∠ABC=30°
∵△ABC为“灵动三角形”,
当∠ABC=3∠BAC时,
∴30°=3(90°﹣x),
∴x=80°;
当∠BCA=3∠BAC时,
∴60°+x=3(90°﹣x),
∴x=52.5°;
当∠BCA=3∠ABC时,
∴60°+x=90°,
∴x=30°;
∴综上所述:∠OAC=80°或52.5°或30°.
故答案为:80°或52.5°或30°.
三.解答题
20.解:∵AD平分∠BAC,
∴∠BAC=2∠BAD=80°,
∵∠C=70°,
∴∠B=180°﹣∠BAC﹣∠C=180°﹣70°﹣80°=30°,
∴∠ADE=∠B+∠BAD=30°+40°=70°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°﹣∠ADE=90°﹣70°=20°.
21.解:∵AD⊥BC,∠B=60°,
∴在△ABD中,∠BAD=180°﹣90°﹣60°=30°,
又∵∠DAE=10°,
∴∠BAE=∠BAD+∠DAE=30°+10°=40°,
又∵AE平分∠BAC,
∴∠BAC=2∠BAE=80°,
∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.
答:∠C的度数是40°.
22.解:(1)∵MN⊥PQ,
∴∠AOB=90°,
∵∠BAO=40°,
∴∠ABO=90°﹣∠OAB=50°,
∵AI平分∠BAO,BI平分∠ABO,
∴∠IBA=∠ABO=25°,∠IAB=∠OAB=20°,
∴∠AIB=180°﹣(∠IBA+∠IAB)=135°.
(2)①∵∠MBA=∠AOB+∠BAO=90°+40°=130°,
∵AI平分∠BAO,BC平分∠ABM,
∴∠CBA=∠MBA=65°,∠BAI=∠BAO=20°,
∵∠CBA=∠D+∠BAD,
∴∠D=45°,
故答案为:45.
②不变,
理由:∵∠D=∠CBA﹣∠BAD=∠MBA﹣∠BAO=(∠MBA﹣∠BAO)=∠AOB=×90°=45°,
∴点A、B在运动的过程中,∠ADB=45°.
23.(1)解:∵∠A=80°.
∴∠ABC+∠ACB=100°,
∵点P是∠ABC和∠ACB的平分线的交点,
∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,
(2)∵外角∠MBC,∠NCB的角平分线交于点Q,
∴∠QBC+∠QCB=(∠MBC+∠NCB)
=(360°﹣∠ABC﹣∠ACB)
=(180°+∠A)
=90°+∠A
∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;
(3)延长BC至F,
∵CQ为△ABC的外角∠NCB的角平分线,
∴CE是△ABC的外角∠ACF的平分线,
∴∠ACF=2∠ECF,
∵BE平分∠ABC,
∴∠ABC=2∠EBC,
∵∠ECF=∠EBC+∠E,
∴2∠ECF=2∠EBC+2∠E,
即∠ACF=∠ABC+2∠E,
又∵∠ACF=∠ABC+∠A,
∴∠A=2∠E,即∠E=∠A;
∵∠EBQ=∠EBC+∠CBQ
=∠ABC+∠MBC
=(∠ABC+∠A+∠ACB)=90°.
如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:
①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;
②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;
③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;
④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.
综上所述,∠A的度数是90°或60°或120°.
24.解:(1)△ABC是“三倍角三角形”,理由如下:
∵∠A=35°,∠B=40°,
∴∠C=180°﹣35°﹣40°=105°=35°×3,
∴△ABC是“三倍角三角形”;
(2)∵∠B=60°,
∴∠A+∠C=120°,
设最小的角为x,
①当60°=3x时,x=20°,
②当x+3x=120°时,x=30°,
答:△ABC中最小内角为20°或30°.