沪教版(上海)九下 第二十七章圆与正多边形月考练习题(含解析)

文档属性

名称 沪教版(上海)九下 第二十七章圆与正多边形月考练习题(含解析)
格式 doc
文件大小 2.6MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-23 14:36:24

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的 ( http: / / www.21cnjy.com )位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【版权所有:21教育】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相交或相切
2、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是(    )
( http: / / www.21cnjy.com / )
A.AM=BM B.CM=DM C. D.
3、如图,点,,在上,是等边三角形,则的大小为( )
( http: / / www.21cnjy.com / )
A.60° B.40° C.30° D.20°
4、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )
( http: / / www.21cnjy.com / )
A.10 B.6 C.6 D.12
5、已知在圆的内接四边形ABCD中,∠A:∠C=3:1,则∠C的度数是(  )
A.45° B.60° C.90° D.135°
6、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
( http: / / www.21cnjy.com / )
A.20° B.25° C.30° D.40°
7、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
8、下列叙述正确的有( )个.
(1)随着的增大而增大;
(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
(5)以为三边长度的三角形,不是直角三角形.
A.0 B.1 C.2 D.3
9、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
( http: / / www.21cnjy.com / )
A.4 B.6 C.8 D.10
10、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )21·cn·jy·com
( http: / / www.21cnjy.com / )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,五边形是⊙的内接正五边形,则的度数是____.
( http: / / www.21cnjy.com / )
2、在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB.
3、如图,网格中的小正方形边长都是1,则以为圆心,为半径的和弦所围成的弓形面积等于___________.21cnjy.com
( http: / / www.21cnjy.com / )
4、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.
( http: / / www.21cnjy.com / )
5、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,△ABC内接于⊙O,高AD经过圆心O.
(1)求证:;
(2)若,⊙O的半径为5,求△ABC的面积.
( http: / / www.21cnjy.com / )
2、如图,AB是⊙O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D .
( http: / / www.21cnjy.com / )
(1)求证:DBDE;
(2)若AB12,BD5,求AC长.
3、如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径.
(2)有一艘宽为7.8m的货船,船舱顶部为长方形,并高出水面3m,则此货船是否能顺利通过此圆弧形拱桥?并说明理由.
( http: / / www.21cnjy.com / )
4、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:
( http: / / www.21cnjy.com / )
证明:如图②,连接,
是⊙O的直径,,
①________.(1)
为⊙O的切线,,
,(2)
由(1)(2)得,②________________.
平分.

③________,

任务:
(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;
(2)若,求的长.
5、已知直线m与⊙O,AB是⊙O的直径,AD⊥m于点D.
(1)如图①,当直线m与⊙O相交于点E、F时,求证:∠DAE=∠BAF.
(2)如图②,当直线m与⊙O相切于点C时,若∠DAC=35°,求∠BAC的大小;
(3)若PC=2,PB=2,求阴影部分的面积(结果保留π).
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、B
【分析】
圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
【详解】
解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
⊙O的半径等于圆心O到直线l的距离,
直线l与⊙O的位置关系为相切,
故选B
【点睛】
本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
2、B
【分析】
根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
【详解】
解:∵弦AB⊥CD,CD过圆心O,
∴AM=BM,,,
即选项A、C、D选项说法正确,不符合题意,
当根据已知条件得CM和DM不一定相等,
故选B.
【点睛】
本题考查了垂径定理,解题的关键是掌握垂径定理.
3、C
【分析】
由为等边三角形,得:∠AOB=60°,再根据圆周角定理,即可求解.
【详解】
解:∵为等边三角形,
∴∠AOB=60°,
∴=∠AOB =×60°=30°.
故选C.
【点睛】
本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键.
4、D
【分析】
连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
【详解】
解:连接OB,OC,
( http: / / www.21cnjy.com / )
∵∠BAC=30°,
∴∠BOC=60°.
∵OB=OC,BC=6,
∴△OBC是等边三角形,
∴OB=BC=6.
∴⊙O的直径等于12.
故选:D.
【点睛】
本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
5、A
【分析】
根据圆内接四边形的性质得出∠A+∠C=180°,再求出∠C即可.
【详解】
解:∵四边形ABCD是圆的内接四边形,
∴∠A+∠C=180°,
∵∠A:∠C=3:1,
∴∠C=×180°=45°,
故选:A.
【点睛】
本题考查了元内接四边形对角互补的性质,熟练掌握性质是解题的关键.
6、B
【分析】
连接OA,如图,根据切线的性质得∠PAO ( http: / / www.21cnjy.com )=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.2-1-c-n-j-y
【详解】
解:连接OA,如图,
( http: / / www.21cnjy.com / )
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2·1·c·n·j·y
7、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.21*cnjy*com
【详解】
( http: / / www.21cnjy.com / )
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,

∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
8、D
【分析】
根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.21世纪教育网版权所有
【详解】
当或者时,随着的增大而增大,故(1)不正确;
如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;www.21-cn-jy.com
∵圆的直径所对的圆周角为直角
∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


∴以为三边长度的三角形,是直角三角形,故(5)错误;
故选:D.
【点睛】
本题考查了三角形、垂直平分线、 ( http: / / www.21cnjy.com )反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
9、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆 ( http: / / www.21cnjy.com )角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
10、A
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
( http: / / www.21cnjy.com / )
【点睛】
本题考查切线长性质,锐角三角形函数,扇形 ( http: / / www.21cnjy.com )面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.【来源:21·世纪·教育·网】
二、填空题
1、
【分析】
根据圆内接正五边形的定义求出∠COD,利用三角形内角和求出答案.
【详解】
解:∵五边形是⊙的内接正五边形,
∴∠COD=,
∵OC=OD,
∴=,
故答案为:.
【点睛】
此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键.21教育名师原创作品
2、②④
【分析】
将所给四个条件逐一判断即可得出结论.
【详解】
解:在中,
①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;
②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,
所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;
③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;
④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;
所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB【出处:21教育名师】
故答案为②④
【点睛】
本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.
3、
【分析】
根据勾股定理求出半径AO的长度,然后根据弓形面积=扇形OAB的面积-三角形OAB的面积,求解即可.
【详解】
解:由勾股定理得,,
由网格的性质可得,是等腰直角三角形,
∴和弦所围成的弓形面积=.
故答案为:.
【点睛】
此题考查了网格的特点和性质,勾股定理,扇形面积公式等知识,解题的关键是正确分析出弓形面积=扇形面积-三角形OAB的面积.
4、
【分析】
根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即.
【详解】
解:在中,,


故答案为:
【点睛】
本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.
5、60
【分析】
根据弧长公式求解即可.
【详解】
解:,
解得,,
故答案为:60.
【点睛】
本题考查了弧长公式,灵活应用弧长公式是解题的关键.
三、解答题
1、(1)见解析;(2)
【分析】
(1)根据垂径定理可得AD垂直平分BC,即可证明结论;
(2)连接OB,根据勾股定理可得,得出,利用三角形面积公式求解即可.
【详解】
证明:(1)在⊙O中,
∵ OD⊥BC于D,
∴ BD=CD,
∴ AD垂直平分BC,
∴ AB=AC;
(2)连接OB,如图所示:
( http: / / www.21cnjy.com / )
∵BC=8,由(1)得BD=CD,
∴ ,
∵ ,
∴ ,
∴ ,
∴ △ABC的面积:,
∴ △ABC的面积为32.
【点睛】
题目主要考查垂径定理的应用,垂直平分线的性质,勾股定理等,理解题意,综合运用各个定理性质是解题关键.21·世纪*教育网
2、(1)见解析;(2)
【分析】
(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
【详解】
(1)如图,
( http: / / www.21cnjy.com / )
∵DC⊥OA,
∴∠1+∠3=90°,
∵BD为切线,
∴OB⊥BD,
∴∠2+∠5=90°,
∵OA=OB,
∴∠1=∠2,
∵∠3=∠4,
∴∠4=∠5,
在△DEB中,∠4=∠5,
∴DE=DB.
(2)如图,作DF⊥AB于F,
( http: / / www.21cnjy.com / )
连接OE,∵DB=DE,
∴EF=BE=3,
在Rt△DEF中,EF=3,DE=BD=5,
∴DF=
∴sin∠DEF== ,
∵∠AOE,,
∴∠AOE=∠DEF,
∴在Rt△AOE中,sin∠AOE= ,
∵AE=6,
∴AO=.
【点睛】
本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.21教育网
3、(1)6.5米;(2)不能顺利通过,理由见解析
【分析】
(1)设圆心为O,连接OC,OB,拱桥的半径r米,作出相应图形,然后在中,利用勾股定理求解即可得;21*cnjy*com
(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距,即可得出结论.
【详解】
(1)如图所示,设圆心为O,连接OC,OB,拱桥的半径r米,
( http: / / www.21cnjy.com / )
在中,

解得米;
(2)当弦长为7.8时,弦心距.
∴此货船不能顺利通过此圆弧形拱桥.
【点睛】
题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键.【来源:21cnj*y.co*m】
4、(1),,;(2)
【分析】
(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;
(2)在直角△ODE中利用勾股定理求解即可.
【详解】
解:(1)如图②,连接,
是⊙O的直径,

∠ODB.(1)
为⊙O的切线,

,(2)
由(1)(2)得,∠ODA=∠BDE.
平分,
∴.

∠ODA,

( http: / / www.21cnjy.com / )
故答案为:① ,② ,③ ;
(2)为的切线,





在中,

【点睛】
本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.
5、(1)见解析;(2);(3).
【分析】
(1)通过已知条件可知,,再通过同角的补交相等证得,即可得到答案;
(2)利用,得,再通过OA=OC,得;
(3)现在中,利用勾股定理求得半径r=2,再通过,得,即可求得,那么,即可求解.
【详解】
解:(1)如图,连接BF
( http: / / www.21cnjy.com / )
∵AD⊥m

∵AB是⊙O的直径


∵,

∴∠DAE=∠BAF
(2)连接OC
( http: / / www.21cnjy.com / )
∵直线m与⊙O相切于点C

∵AD⊥m


∵OA=OC

(3)连接OC
( http: / / www.21cnjy.com / )
∵直线m与⊙O相切于点C

设半径OC=OB=r
在中,则:

解得:r=2,即OC=r=2



∴.
【点睛】
本题考查了圆切线、内接四边形的性质,以及解直角三角形的应用,扇形面积求法,解答此题的关键是掌握圆的性质.www-2-1-cnjy-com
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)