沪教版(上海)九下 第二十七章圆与正多边形章节测评试题(无超纲,含解析)

文档属性

名称 沪教版(上海)九下 第二十七章圆与正多边形章节测评试题(无超纲,含解析)
格式 doc
文件大小 2.4MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-23 09:11:09

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )
( http: / / www.21cnjy.com / )
A.3 B.2 C.1 D.
2、计算半径为1,圆心角为的扇形面积为( )
A. B. C. D.
3、如图,四边形ABCD内接于⊙O,连接BD,若,∠BDC=50°,则∠ADC的度数是( )
( http: / / www.21cnjy.com / )
A.125° B.130° C.135° D.140°
4、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
( http: / / www.21cnjy.com / )
A.45° B.60° C.90° D.120°
5、如图,正的边长为,边长为的正的顶点R与点A重合,点P,Q分别在AC,AB上,将沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为( )【来源:21·世纪·教育·网】
( http: / / www.21cnjy.com / )
A. B. C. D.
6、如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为(  )
( http: / / www.21cnjy.com / )
A.45° B.30° C.20° D.15°
7、如图,点A,B,C均在上,当时,的度数是( ).
( http: / / www.21cnjy.com / )
A.65° B.60° C.55° D.50°
8、如图,已知中,,则圆周角的度数是( )
( http: / / www.21cnjy.com / )
A.50° B.25° C.100° D.30°
9、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
10、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
( http: / / www.21cnjy.com / )
A.相交 B.相切
C.相离 D.不确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°
( http: / / www.21cnjy.com / )
2、 “化圆为方”是古希腊尺规作图难题之 ( http: / / www.21cnjy.com )一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
已知:⊙O(纸片),其半径为.
求作:一个正方形,使其面积等于⊙O的面积.
作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
②如图2,以点为圆心,为半径画弧交直线于点;
③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
④取的中点,以点为圆心,为半径画半圆,交射线于点;
⑤以为边作正方形.
正方形即为所求.
( http: / / www.21cnjy.com / )
根据上述作图步骤,完成下列填空:
(1)由①可知,直线为⊙O的切线,其依据是________________________________.
(2)由②③可知,,,则_____________,____________(用含的代数式表示).
(3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
3、AC是⊙O的直径,弦BD⊥AC于点E,连接BC,过点O作OF⊥BC于点F,若BD=12cm,OE=cm,则OF=________cm.
4、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.
( http: / / www.21cnjy.com / )
5、如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形.若制作一个圆心角为160°的圆弧形窗帘轨道(如图2)需用此材料mm,则此圆弧所在圆的半径为________mm.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB⊥CD于点E,P是AB延长线上一点,且∠BCP=∠BCD
(1)求证:CP是⊙O的切线;
(2)连接DO并延长,交AC于点F,交⊙O于点G,连接GC若⊙O的半径为5,OE=3,求GC和OF的长
( http: / / www.21cnjy.com / )
2、新定义:在平面直角坐标系x ( http: / / www.21cnjy.com )Oy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.
( http: / / www.21cnjy.com / )
(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是  (请直接写出正确的序号).
( http: / / www.21cnjy.com / )
(2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
(3)如图3,已知点B(0,2 ( http: / / www.21cnjy.com )),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
3、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.
( http: / / www.21cnjy.com / )
(1)弦AB的长为 .
(2)求劣弧的长.
4、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接等腰直角三角形ABC.
( http: / / www.21cnjy.com / )
作法:如图,
( http: / / www.21cnjy.com / )
①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
根据小明设计的尺规作图过程,解决下面的问题:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC= .
∵AB是直径,
∴∠ACB= ( ) (填写推理依据) .【版权所有:21教育】
∴△ABC是等腰直角三角形.
5、如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径.
(2)有一艘宽为7.8m的货船,船舱顶部为长方形,并高出水面3m,则此货船是否能顺利通过此圆弧形拱桥?并说明理由.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、B
【分析】
连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
【详解】
解:连接OC,如图
( http: / / www.21cnjy.com / )
∵AB 为⊙O 的直径,CDAB,垂足为点 E,CD=8,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
2、B
【分析】
直接根据扇形的面积公式计算即可.
【详解】
故选:B.
【点睛】
本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
3、B
【分析】
如图所示,连接AC,由圆 ( http: / / www.21cnjy.com )周角定理∠BAC=∠BDC=50°,再由等弧所对的圆周角相等得到∠ABC=∠BAC=50°,再根据圆内接四边形对角互补求解即可.2·1·c·n·j·y
【详解】
解:如图所示,连接AC,
∴∠BAC=∠BDC=50°,
∵,
∴∠ABC=∠BAC=50°,
∵四边形ABCD是圆内接四边形,
∴∠ADC=180°-∠ABC=130°,
故选B.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键.【出处:21教育名师】
4、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的 ( http: / / www.21cnjy.com )内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.www-2-1-cnjy-com
5、B
【分析】
从图中可以看出在AB边,翻转的第一次是一 ( http: / / www.21cnjy.com )个120度的圆心角,半径是1,第二次是以点P为圆心,所以没有路程,同理在AC和BC上也是相同的情况,由此求解即可.【来源:21cnj*y.co*m】
【详解】
解:从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次,第二次同样没有路程,AC边上也是如此,点P运动路径的长为×3=2π.21*cnjy*com
故选:B.
【点睛】
本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P点的运动轨迹.
6、B
【分析】
连接O1O2,AO2,O1B,可得△AO2O1是等边三角形,再根据圆周角定理即可解答.
【详解】
解:连接O1O2,AO2,O1B,
( http: / / www.21cnjy.com / )
∵O1B= O1A

∵⊙O1和⊙O2是等圆,
∴AO1=O1O2=AO2,
∴△AO2O1是等边三角形,
∴∠AO2O1=60°,
∴∠O1AB=∠AO2O1 =30°.
故选:B.
【点睛】
此题主要考查了相交两圆的性质以及等边三角形的判定与性质,得出△AO2O1是等边三角形是解题关键.
7、C
【分析】
先由OB=OC,得到∠OCB=∠OBC=35°,从而可得∠BOC=180°-∠OCB-∠OBC=110°,再由圆周角定理即可得到答案.21教育网
【详解】
解:∵OB=OC,
∴∠OCB=∠OBC=35°,
∴∠BOC=180°-∠OCB-∠OBC=110°,
∴,
故选C.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键.
8、B
【分析】
根据圆周角定理,即可求解.
【详解】
解:∵ ,
∴ .
故选:B
【点睛】
本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键.2-1-c-n-j-y
9、B
【分析】
由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.21教育名师原创作品
【详解】
解:根据题意,如图:
( http: / / www.21cnjy.com / )
∵AB是的直径,OD是半径,,
∴AE=CE,
∴阴影CED的面积等于AED的面积,
∴,
∵,,
∴,
∴;
故选:B
【点睛】
本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
10、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系21世纪教育网版权所有
【详解】
解:连接,
( http: / / www.21cnjy.com / )
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
二、填空题
1、
【分析】
连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
【详解】
解:连接,如图,
( http: / / www.21cnjy.com / )
PA,PB分别与⊙O相切
故答案为:
【点睛】
本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
【分析】
(1)根据切线的定义判断即可.
(2)由=AC+,计算即可;根据计算即可.
(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
【详解】
解:(1)∵⊙O的直径,作射线,过点作的垂线,
∴经过半径外端且垂直于这条半径的直线是圆的切线;
故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
(2)根据题意,得AC=r,==πr,
∴=AC+=r+πr,
∴=;
∵,
∴MA=-r=,
故答案为:,;
(3)如图,连接ME,
根据勾股定理,得
=
=;
( http: / / www.21cnjy.com / )
故答案为:.
【点睛】
本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
3、或
【分析】
根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.
【详解】
解:如图,连接BO
( http: / / www.21cnjy.com / )
∵AC是⊙O的直径,弦BD⊥AC于点E,BD=12cm,
∴,
∵OE=cm,BD⊥AC,
∴cm,
∴,,
∵OF⊥BC,
∴,
∴,
如图,
( http: / / www.21cnjy.com / )
∵OE=cm,BD⊥AC, ,
∴,
∵OF⊥BC,
∴,
∴.
故答案为:或.
【点睛】
本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.
4、##
【分析】
连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
【详解】
解:连接,取的中点,连接,
( http: / / www.21cnjy.com / )

点在以为圆心,为半径的圆上,
当、、三点共线时,最小,
是直径,

,,
,,
在中,,

故答案为:.
【点睛】
本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
5、900
【分析】
由弧长公式l=得到R的方程,解方程即可.
【详解】
解:根据题意得,=,解得,R=900(mm).
答:这段圆弧所在圆的半径R是900 mm.
故答案是:900.
【点睛】
本题考查了弧长的计算公式:l=,其中l表示弧长,n表示弧所对的圆心角的度数.
三、解答题
1、(1)见解析;(2),
【分析】
(1)连接OC,由已知可 ( http: / / www.21cnjy.com )得∠OCB+∠BCD=90°,进而根据∠BCP=∠BCD,等量代换可得∠OCB+∠BCP=90°,即可证明CP是⊙O的切线;21*cnjy*com
(2)证明OE为△DCG的中位线,由,证明△GCF∽△OAF,进而列出比例式代入数值进行计算即可.
【详解】
(1)证明:连接OC
( http: / / www.21cnjy.com / )
∵OB=OC,
∴∠OBC=∠OCB
∵AB⊥CD于点E,
∴∠CEB=90°
∴∠OBC+∠BCD=90°
∴∠OCB+∠BCD=90°
∵∠BCP=∠BCD,
∴∠OCB+∠BCP=90°
∴OC⊥CP
∴CP是⊙O的切线
(2)∵AB⊥CD于点E,
∴E为CD中点
∵O为GD中点,
∴OE为△DCG的中位线
∴GC=2OE=6,

∴△GCF∽△OAF


∵GF+OF=5,
∴OF=
【点睛】
本题考查了切线的性质判定,相似三角形的性质与判定,掌握切线的性质与判定是解题的关键.
2、(1)①③;(2)点N的横坐标;(3)或.
【分析】
(1)在坐标系中作出圆及三个函数图象,即可得;
(2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;www.21-cn-jy.com
(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
【详解】
解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,
( http: / / www.21cnjy.com / )
故答案为:①③;
(2)如图所示:
( http: / / www.21cnjy.com / )
∵直线l是的关联直线,
∴直线l的临界状态是与相切的两条直线和,
当临界状态为时,连接TM,
∴,,
∵当时,,
当时,,
∴,
∴为等腰直角三角形,
∴,

∴点,
同理可得当临界状态为时,
点,
∴点N的横坐标;
(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;
( http: / / www.21cnjy.com / )
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得

得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最大值为,
②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
设点,直线HB的解析式为,直线HD的解析式为,
( http: / / www.21cnjy.com / )
当时,与互为相反数,可得

得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最小值为,
③当时,两条直线与圆无公共点,不符合题意,
∴,
综上可得:或.
【点睛】
题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
3、(1),(2).
【分析】
(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;
(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.
【详解】
解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,
∴OD=CD=,∠ODB=90°,
∴,
∴AB=2BD=2×,
故答案为;
(2)cos∠DOB=,
∴∠DOB=60°,
∴的度数为2×60°=120°,
∴.
【点睛】
本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.21·世纪*教育网
4、(1)见解析;(2)BC,90°,直径所对的圆周角是直角
【分析】
(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点C,D;连结AC、BC即可;
(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.
【详解】
(1)①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
( http: / / www.21cnjy.com / )
(2)证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC=BC.
∵AB是直径,
∴∠ACB=90°(直径所对的圆周角是直角) .
∴△ABC是等腰直角三角形.
故答案为:BC,90°,直径所对的圆周角是直角.
【点睛】
本题考查尺规作圆内接等腰直角三 ( http: / / www.21cnjy.com )角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.
5、(1)6.5米;(2)不能顺利通过,理由见解析
【分析】
(1)设圆心为O,连接OC,OB,拱桥的半径r米,作出相应图形,然后在中,利用勾股定理求解即可得;
(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距,即可得出结论.
【详解】
(1)如图所示,设圆心为O,连接OC,OB,拱桥的半径r米,
( http: / / www.21cnjy.com / )
在中,

解得米;
(2)当弦长为7.8时,弦心距.
∴此货船不能顺利通过此圆弧形拱桥.
【点睛】
题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键.21·cn·jy·com
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)