中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
2、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
3、如图,一块直角三角板的30°角的顶点P落在⊙O上,两边分别交⊙O于A,B两点,连结AO,BO,则∠AOB的度数是( )【出处:21教育名师】
( http: / / www.21cnjy.com / )
A.30° B.60° C.80° D.90°
4、下列说法正确的是( )
A.等弧所对的圆周角相等 B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等 D.过弦的中点的直线必过圆心
5、如图,四边形ABCD内接于,若,则的度数为( )
( http: / / www.21cnjy.com / )
A.50° B.100° C.130° D.150°
6、如图,中,,,点O是的内心.则等于( )
( http: / / www.21cnjy.com / )
A.124° B.118° C.112° D.62°
7、如图,点,,在上,是等边三角形,则的大小为( )
( http: / / www.21cnjy.com / )
A.60° B.40° C.30° D.20°
8、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
9、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
( http: / / www.21cnjy.com / )
A.19° B.38° C.52° D.76°
10、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知PA、PB是⊙O ( http: / / www.21cnjy.com )的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).【版权所有:21教育】
( http: / / www.21cnjy.com / )
2、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.21教育名师原创作品
( http: / / www.21cnjy.com / )
3、边长为2的正三角形的外接圆的半径等于___.
4、若一个扇形的半径是18cm,且它的弧长是,则此扇形的圆心角等于______.
5、一个扇形的面积是3πcm2,圆心角是60°,则此扇形的半径是______cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知正方形 ABCD 的边长 ( http: / / www.21cnjy.com )为4,以点 A 为圆心,1为半径作圆,点 E 是⊙A 上的一动点,点 E 绕点 D 按逆时针方向转转 90°,得到点 F,接 AF.21*cnjy*com
(1)求CF长;
(2)当A、E、F三点共线时,求EF长;
(3) AF的最大值是__________.
( http: / / www.21cnjy.com / )
2、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.21*cnjy*com
(1)求证:CE是⊙O的切线;
(2)若AB的长为6,求CE的长.
( http: / / www.21cnjy.com / )
3、新定义:在一个四边形中,若有 ( http: / / www.21cnjy.com )一组对角都等于90°,则称这个四边形为双直角四边形.如图1,在四边形ABCD中,∠A=∠C=90°,那么四边形ABCD就是双直角四边形.21·cn·jy·com
(1)若四边形ABCD是双直角四边形,且AB=3,BC=4,CD=2,求AD的长;
(2)已知,在图2中,四边形ABCD内接与⊙O,BC=CD且∠BAC=45°;
①求证:四边形ABCD是双直角四边形;
②若AB=AC,AD=1,求AB的长和四边形ABCD的面积.
( http: / / www.21cnjy.com / )
4、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)求过A,B,C三点的圆的半径;
(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;
( http: / / www.21cnjy.com / )
5、已知AB是⊙O的直径,点C是圆O上一点,点P为⊙O外一点,且OP∥BC,∠P=∠BAC.
(1)求证:PA为⊙O的切线;
(2)如果OP=AB=6,求图中阴影部分面积.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、B
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外 d>r;点P在圆上 d=r;点P在圆内 d<r.
2、D
【分析】
根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
【详解】
解:设AB与CD交于点E,
∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,
( http: / / www.21cnjy.com / )
∴CE=CD=,∠CEO=∠DEB=90°,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∴∠OCE=30°,
∴,
∴,
又∵,即
∴,
在△OCE和△BDE中,
,
∴△OCE≌△BDE(AAS),
∴
∴阴影部分的面积S=S扇形COB=,
故选D.
【点睛】
本题考查了垂径定理、含30度角的直角三角形 ( http: / / www.21cnjy.com )的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
3、B
【分析】
延长AO交⊙O于点D,连接BD,根据圆周角 ( http: / / www.21cnjy.com )定理得出∠D=∠P=30°,∠ABD=90°,由直角三角形的性质可推得AB=BO=AO,然后根据等边三角形的判定与性质可以得解.【来源:21cnj*y.co*m】
【详解】
解:如图,延长AO交⊙O于点D,连接BD,
( http: / / www.21cnjy.com / )
∵∠P=30°,
∴∠D=∠P=30°,
∵AD是⊙O的直径,
∴∠ABD=90°,
∴AB=AD=AO=BO,
∴三角形ABO是等边三角形,
∴∠AOB=60°,
故选B.
【点睛】
本题考查圆的综合应用,熟练掌握圆周角定理、圆直径的性质、直角三角形的性质、等边三角形的判定和性质是解题关键.21cnjy.com
4、A
【分析】
根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.
【详解】
解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;
B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;
C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;
D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.
故选A.
【点睛】
本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.
5、B
【分析】
根据圆内接四边形的性质求出∠A的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠A+∠DCB=180°,
∵∠DCB=130°,
∴∠A=50°,
由圆周角定理得,=2∠A=100°,
故选:B.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
6、B
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内心: ( http: / / www.21cnjy.com )三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
7、C
【分析】
由为等边三角形,得:∠AOB=60°,再根据圆周角定理,即可求解.
【详解】
解:∵为等边三角形,
∴∠AOB=60°,
∴=∠AOB =×60°=30°.
故选C.
【点睛】
本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键.
8、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.www-2-1-cnjy-com
9、B
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
( http: / / www.21cnjy.com / )
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定 ( http: / / www.21cnjy.com )理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.2·1·c·n·j·y
10、A
【分析】
根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.
【详解】
解:∵⊙O的半径分别是3,点P到圆心O的距离为4,
∴d>r,
∴点P与⊙O的位置关系是:点在圆外.
故选:A.
【点睛】
本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.
二、填空题
1、①②③
【分析】
根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.【来源:21·世纪·教育·网】
【详解】
解:如图, 是的两条切线,
故①正确,
故②正确,
是的两条切线,
取的中点,连接,则
∴以为圆心,为半径作圆,则共圆,故③正确,
M是外接圆的圆心,
与题干提供的条件不符,故④错误,
综上:正确的说法是①②③.
故填①②③.
( http: / / www.21cnjy.com / )
【点睛】
本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.21·世纪*教育网
2、
【分析】
如图,连接OD,OE,OC,设DO与⊙O ( http: / / www.21cnjy.com )交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.2-1-c-n-j-y
【详解】
解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,
∵四边形BCDE是正方形,
∴∠BCD=∠CBE=90°,CD=BC=BE=DE,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,
∴△OCD≌△OBE(SAS),
∴OE=OD,
根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,
∵∠MCB=∠MOB=×90°=45°,
∴∠DCM=∠BCM=45°,
∵四边形BCDE是正方形,
∴C、M、E共线,∠DEM=∠BEM,
在△EMD和△EMB中,
,
∴△MED≌△MEB(SAS),
∴DM=BM===2(cm),
∴OD的最大值=2+2,即OE的最大值=2+2;
故答案为:(2+2)cm.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.
3、
【分析】
过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
【详解】
( http: / / www.21cnjy.com / )
如图所示,是正三角形,故O是的中心,,
∵正三角形的边长为2,OE⊥AB
∴,,
∴,
由勾股定理得:,
∴,
∴,
∴(负值舍去).
故答案为:.
【点睛】
本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
4、60°度
【分析】
根据变形为n=计算即可.
【详解】
∵扇形的半径是18cm,且它的弧长是,且
∴n===60°,
故答案为:60°.
【点睛】
本题考查了弧长公式,灵活进行弧长公式的变形计算是解题的关键.
5、
【分析】
设扇形的半径为再由扇形的面积公式列方程可得再解方程可得答案.
【详解】
解:设扇形的半径为
则
解得:,
故答案为:
【点睛】
本题考查的已知扇形的面积求解扇形的半径,熟记扇形的面积公式是解本题的关键.
三、解答题
1、(1)1;(2)或;(3)
【分析】
(1)连接AE,根据同角的余角相等可得:,利用全等三角形的判定定理可得:,再由其性质即可得解;
(2)分两种情况讨论:①当点E在正方形内部时,点A、E、F三点共线时,AF与圆C相切;②当点E在正方形外部时,点A、、三点共线时,与圆C相切;两种情况分别利用勾股定理进行求解即可得;
(3)根据题意判断出AF最大时,点C在AF上,根据正方形的性质求出AC,从而得出AF的最大值.
【详解】
解:(1)连接AE,如图所示:
( http: / / www.21cnjy.com / )
∵,
即:,
∴,
在与中,
,
∴,
∴;
(2)①如图所示:当点A、E、F三点共线时,AF与圆C相切,
( http: / / www.21cnjy.com / )
则,
,
,
∴,
∴;
②如图所示:当点A、、三点共线时,与圆C相切,
( http: / / www.21cnjy.com / )
则,
,
,
∴,
∴;
综合可得:当点A、E、F三点共线时,EF长为或;
(3)如图所示,点C在线段AF上,AF取得最大值,
( http: / / www.21cnjy.com / )
,
∵,
∴,
即:AF的最大值是,
故答案为:.
【点睛】
题目主要考查正方形的性质,切线及旋转的性质,勾股定理等,理解题意,画出相应辅助图形是解题关键.
2、(1)见解析;(2)3
【分析】
(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
【详解】
解:(1)证明:如图连接OC、OB.
∵是等边三角形
∴
∵
∴
又 ∵
∴
∴
∴
∴与⊙O相切;
(2)∵四边形ABCD是⊙O的内接四边形,
∴
∴
∵D为的中点,
∴
∴
∵
∴
∴
【点睛】
本题主要考查等边三角形的性质 ( http: / / www.21cnjy.com )、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
3、(1);(2)①见解析;②
【分析】
(1)连接BD,运用勾股定理求出BD和AD即可;
(2)①连接OB,OC,OD,证明BD是的直径即可;②过点D作于点E,设圆的半径为R,由勾股定理求出AB,AD,BC,CD的长,再根据运用三角形面积公式求解即可.
【详解】
解:(1)连接BD,如图,
( http: / / www.21cnjy.com / )
在中,BC=4,CD=2,
∵
∴
在中,AB=3,BD=2 ,
∵
∴
(2)连接OB,OC,OD,如图,
( http: / / www.21cnjy.com / )
∵
∴
在和中
∴≌
∴
∴O是线段BD的中点,
∴BD为的直径
∴
∴四边形ABCD是双直角四边形;
(3)过点D作于点E,
( http: / / www.21cnjy.com / )
∵
∴
∴是等腰直角三角形
在中,,
∵
∴
设圆的半径为R,
∵和均为等腰直角三角形,
∴
在中,
在中,
∵,
∴
解得,
∴
【点睛】
本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点.
4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).
【分析】
(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;
(2)圆的圆心在BC的中垂线上,故设圆 ( http: / / www.21cnjy.com )心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;
(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.
【详解】
解:(1)令x=0,则y=3,
则点A的坐标为(3,0),
根据题意得:OC=3=OA=3OB,
故点B、C的坐标分别为:(-1,0)、(3,0),
则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),
把(3,0)代入得-3a=3,
解得:a=-1,
故抛物线的表达式为:y=-x2+2x+3;
(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),
则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),
则圆的半径为:;
(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,
( http: / / www.21cnjy.com / )
设点P(x,-x2+2x+3),过点P作PQ⊥轴于点Q,
∵OA =OC,∠PAC=90°,
∴∠ACO=∠OAC=45°,
∵∠PAC=90°,
∴∠PAQ=45°,
∴△PAQ 是等腰直角三角形,
∴PQ=AQ=x,
∴AQ+AO=x+3=-x2+2x+3,
解得:(舍去),
∴点P(1,4);
设点P1(m,-m2+2m+3),过点P1作P1D⊥轴于点D,
同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,
∴P1D=CD=m2-2m-3,DO=-m,
∴DO+OC= P1D,即-m+3= m2-2m-3,
解得:(舍去),
∴点P(-2,-5);
综上,点P(1,4)或(-2,-5).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.21世纪教育网版权所有
5、(1)见解析;(2)3π﹣.
【分析】
(1)先由圆周角定理得∠ACB ( http: / / www.21cnjy.com )=90°,则∠BAC+∠B=90°.再由平行线的性质得∠AOP=∠B,然后证∠P+∠AOP=90°,则∠PAO=90°,即可得证;www.21-cn-jy.com
(2)先证△OAP≌△BCA(AAS),得BC=OA=AB=3,再由扇形面积减去三角形面积即可解决问题.
【详解】
(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC+∠B=90°,
又∵OP∥BC,
∴∠AOP=∠B,
∴∠BAC+∠AOP=90°,
∵∠P=∠BAC,
∴∠P+∠AOP=90°,
∴∠PAO=90°,
∴PA⊥OA,
∵OA是的⊙O的半径,
∴PA为⊙O的切线;
(2)解:如图,连接OC,
( http: / / www.21cnjy.com / )
由(1)得:∠PAO=∠ACB=90°,
在△OAP和△BCA中,
,
∴△OAP≌△BCA(AAS),
∴OP=AB=6,BC=OA=OC=AB=3,
∴△OBC是等边三角形,
∴∠COB=60°,
∴∠AOC=120°,
∴S扇形AOC==3π,
∵OA=OC,
∴∠OAC=30°,
∴OH=OA=,
∴AH=,
∴AC=2AH=3,
∴S△AOC=AC OH=3×=,
∴图中阴影部分面积=S扇形AOC﹣S△AOC=3π﹣.
【点睛】
本题考查了切线的证明和扇形面积的计算,解题关键是熟练掌握切线证明方法和扇形面积公式.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)