中小学教育资源及组卷应用平台
九年级数学第二学期第二十七章圆与正多边形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
( http: / / www.21cnjy.com / )
A.22.5° B.45° C.90° D.67.5°
2、如图,正方形ABCD的边长为8,若经过C,D两点的⊙O与直线AB相切,则⊙O的半径为( )
( http: / / www.21cnjy.com / )
A.4.8 B.5 C.4 D.4
3、某村东西向的废弃小路/两侧分别有一块与 ( http: / / www.21cnjy.com )l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )【来源:21·世纪·教育·网】
( http: / / www.21cnjy.com / )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
4、计算半径为1,圆心角为的扇形面积为( )
A. B. C. D.
5、如图,已知中,,则圆周角的度数是( )
( http: / / www.21cnjy.com / )
A.50° B.25° C.100° D.30°
6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
C.直径是最长的弦 D.垂直于弦的直径平分这条弦
7、如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于( )
( http: / / www.21cnjy.com / )
A.54° B.56° C.64° D.66°
8、若O是ABC的内心,当时,( )
A.130° B.160° C.100° D.110°
9、如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立是( )
( http: / / www.21cnjy.com / )
A.弧AC=弧AD B.弧BC=弧BD C.CE=DE D.OE=BE
10、如图,点A,B,C均在上,当时,的度数是( ).
( http: / / www.21cnjy.com / )
A.65° B.60° C.55° D.50°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.
2、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.21·世纪*教育网
( http: / / www.21cnjy.com / )
3、在中,,,D,E分别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为________.www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
4、如图,一扇形纸扇完全打开后,外侧两竹条OA和OC的夹角为120°,OA的长为25cm,贴纸部分的宽AB为20cm,则一面贴纸的面积为______.(结果保留π)21*cnjy*com
( http: / / www.21cnjy.com / )
5、边长为2的正三角形的外接圆的半径等于___.
三、解答题(5小题,每小题10分,共计50分)
1、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.
( http: / / www.21cnjy.com / )
(1)求证:CF是⊙O的切线;
(2)若sin∠CAB=,求=_______.(直接写出答案)
2、如图,四边形是的内接四边形,,,.
(1)求的度数.
(2)求的度数.
( http: / / www.21cnjy.com / )
3、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.【版权所有:21教育】
( http: / / www.21cnjy.com / )
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
4、(1)请画出ABC绕点B逆时针旋转90°后的A1BC1.
(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留根号和π).
( http: / / www.21cnjy.com / )
5、如图,已知抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l与抛物线交于A,D两点,点D的坐标为,与y轴交于点E.
( http: / / www.21cnjy.com / )
(1)求A,B两点的坐标及直线l的解析式;
(2)若点P在直线l下方抛物线上,过点P作轴于点M,直线与直线l交于点N,当点M是的三等分点时,求点P的坐标;
(3)若点H是抛物线对称轴上的一点,且,请直接写出点H的坐标.
-参考答案-
一、单选题
1、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
2、B
【分析】
连接EO,延长EO交CD于F,连接DO,设半径为x.构建方程即可解决问题.
【详解】
解:设⊙O与AB相切于点E.连接EO,延长EO交CD于F,连接DO,
再设⊙O的半径为x.
( http: / / www.21cnjy.com / )
∵AB切⊙O于E,
∴EF⊥AB,
∵AB∥CD,
∴EF⊥CD,
∴∠OFD=90°,
在Rt△DOF中,∵∠OFD=90°,OF2+DF2=OD2,
∴(8-x)2+42= x2,
∴x=5,
∴⊙O的半径为5.
故选:B.
【点睛】
本题考查了切线的性质、正方形 ( http: / / www.21cnjy.com )的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.2·1·c·n·j·y
3、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
( http: / / www.21cnjy.com / )
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.21世纪教育网版权所有
4、B
【分析】
直接根据扇形的面积公式计算即可.
【详解】
故选:B.
【点睛】
本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
5、B
【分析】
根据圆周角定理,即可求解.
【详解】
解:∵ ,
∴ .
故选:B
【点睛】
本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键.
6、A
【分析】
定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
【详解】
A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
B、C选项,根据圆的定义可以得到;
D选项,是垂径定理;
故选:A
【点睛】
本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
7、A
【分析】
根据圆周角定理得到∠ADB=90°,∠A=∠BCD=36°,然后利用互余计算∠ABD的度数.
【详解】
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠DAB=∠BCD=36°,
∴∠ABD=∠ADB﹣∠DAB,
即∠ABD=90°﹣∠DAB=90°﹣36°=54°.
故选:A.
【点睛】
本题考查了圆周角定理:在同圆或等圆中 ( http: / / www.21cnjy.com ),同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
8、A
【分析】
由三角形内角和以及内心定义计算即可
【详解】
∵
∴
又∵O是ABC的内心
∴OB、OC为角平分线,
∴
∴180°=180°-50°=130°
故选:A.
【点睛】
本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.21教育名师原创作品
9、D
【分析】
根据垂径定理解答.
【详解】
解:∵AB是⊙O的直径,CD为弦,CD⊥AB于点E,
∴弧AC=弧AD,弧BC=弧BD,CE=DE,
故选:D.
【点睛】
此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键.
10、C
【分析】
先由OB=OC,得到∠OCB=∠OBC=35°,从而可得∠BOC=180°-∠OCB-∠OBC=110°,再由圆周角定理即可得到答案.
【详解】
解:∵OB=OC,
∴∠OCB=∠OBC=35°,
∴∠BOC=180°-∠OCB-∠OBC=110°,
∴,
故选C.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键.
二、填空题
1、9cm
【分析】
由弧长公式即可求得弧的半径.
【详解】
∵
∴
故答案为:9cm
【点睛】
本题考查了扇形的弧长公式,善于对弧长公式变形是关键.
2、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
( http: / / www.21cnjy.com / )
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
3、##
【分析】
首先作PG⊥AB,交AB所在直线于点G, ( http: / / www.21cnjy.com )则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.2-1-c-n-j-y
【详解】
解:如图,作PG⊥AB,交AB所在直线于点G,
( http: / / www.21cnjy.com / )
∵D1,E1在以A为圆心,AD为半径的圆上,
当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,
此时四边形AD1PE1是正方形,
∵∠CAB=90°,AC=AB=4,D,E分别是AB,AC的中点,
∴AD=AE1=AD1=PD1=2,
则BD1=,
故∠ABP=30°,
则PB=2+2,
∴PG=PB=,
故点P到AB所在直线的距离的最大值为:PG=.
故答案为:.
【点睛】
本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.
4、200π
【分析】
根据题意先求出BO,进而分别求出两个扇形的面积作差即可求出答案.
【详解】
解:∵OA长为25cm,贴纸部分的宽AB为20cm,
∴BO=5cm,
∴贴纸的面积为S=S扇形AOC-S扇形BOD==200π(cm2).
故答案为:200π.
【点睛】
本题考查扇形的面积计算,熟练掌握扇形的面积公式是解答此题的关键.
5、
【分析】
过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
【详解】
( http: / / www.21cnjy.com / )
如图所示,是正三角形,故O是的中心,,
∵正三角形的边长为2,OE⊥AB
∴,,
∴,
由勾股定理得:,
∴,
∴,
∴(负值舍去).
故答案为:.
【点睛】
本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
三、解答题
1、
(1)见解析
(2)
【分析】
(1)如图,连接OC,根据等腰三角形的性质可 ( http: / / www.21cnjy.com )得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;
(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.
(1)
(1)如图,连接OC,
∵OA=OC,
∴∠CAB=∠ACO,
∵∠FAC=∠BAC,
∴∠FAC=∠ACO,
∴AF//OC,
∴∠AFC+∠OCF=180°,
∵CF⊥AF,
∴∠OCF=90°,即OC⊥CF,
∴CF是⊙O的切线.
( http: / / www.21cnjy.com / )(2)
在△AFC和△AEC中,,
∴△AFC≌△AEC,
∴S△AFC=S△AEC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE,
∴S△BCD=2S△BCE,
∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,
∴∠BCE=∠CBA,
∵sin∠CAB=,
∴sin∠CAB=sin∠BCE=,
∴BE=,AB=,
∴AE=,
∴====.
故答案为:
【点睛】
本题考查切线的判定、圆周角 ( http: / / www.21cnjy.com )定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.21教育网
2、(1)70°;(2)103°
【分析】
(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;
(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.
【详解】
解:(1),
,,
在中,
.
(2)由圆周角定理,得.
.
【点睛】
题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.
3、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;21·cn·jy·com
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.www.21-cn-jy.com
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质 ( http: / / www.21cnjy.com )、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
4、(1)见解析;(2)π
【分析】
(1)由题意分别作出点A、C绕点B逆时针旋转90°后得到的对应点,再与点B首尾顺次连接即可;
(2)由题意可知C点旋转到C1点所经过的路径为圆弧,进而根据弧长公式求解即可.
【详解】
解:(1)如图所示,△A1BC1即为所求.
( http: / / www.21cnjy.com / )
(2)∵BC==2,∠CBC1=90°,
∴C点旋转到C1点所经过的路径长为=π.
【点睛】
本题主要考查作图-轴对称变换和旋转变换,解题的关键是根据轴对称变换和旋转变换得到变换后的对应点及弧长公式.【出处:21教育名师】
5、(1)A(-1,0),B(3,0),;(2)点P的坐标为(2.5,-1.75)或(1,-4);(3)点H的坐标为(1,5+)或(1,-4).21*cnjy*com
【分析】
(1)先令y=0时,,x1=3,x2=-1. ,即可得到A、B的坐标,然后设直线l解析式为,代入A、D坐标求解即可;
(2)根据题意设点P坐标为(m,),则点N(m,),然后分PM=,且P只能在x轴的下方,这两种情况讨论求解即可;
(3)过点D作DG⊥x轴于G,可得AG=BG=5,∠AGD=90°,再由∠AHD=45°,则点在以G为圆心,以5为半径的圆上,且H在AD下方,设的坐标为(1,n),则,即可求出的坐标为(1,-4);同理当H在AD上方时,H在以(-1,5)为圆心,5为半径的圆上,由此即可得到答案.
【详解】
(1)当y=0时,,
解得x1=3,x2=-1.
∴ A(-1,0),B(3,0).
设直线l解析式为,
∵ l经过D(4,5),A(-1,0),
∴ ,
∴,
∴ 直线l解析式为;
(2)根据题意设点P坐标为(m,),则点N(m,),
∵ 点M是PN的三等分点,点P在直线l下方抛物线上,
∴ PM=,且P只能在x轴的下方,
∴ PM=,PN=,
当PM=时,则,
解得m1=2.5,m2=-1(舍去),
∴ P的坐标为(2.5,-1.75);
当PM=时,则,
解得m1=1,m2=-1(舍去),
∴ P的坐标为(1,-4) ,
综上所述,点P的坐标为(2.5,-1.75)或(1,-4);
(3)如图所示,过点D作DG⊥x轴于G,
∴G点坐标为(4,0),
∴AG=BG=5,∠AGD=90°,
∵∠AHD=45°,
∴点在以G为圆心,以5为半径的圆上,且H在AD下方,
设的坐标为(1,n),
∴,
∴或(舍去),
∴的坐标为(1,-4);
同理当H在AD上方时,H在以(-1,5)为圆心,5为半径的圆上,
设H的坐标为(1,t),
∴,
∴或(舍去),
∴H的坐标为(1,5+);
∴综上所述,点H的坐标为(1,5+)或(1,-4).
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了求二次函数与x轴的交点,求一次函数解析式,圆周角定理,两点距离公式,解题的关键在于能够熟练掌握相关知识进行求解.【来源:21cnj*y.co*m】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)