【精品解析】沪教版(上海)九下 第二十八章统计初步同步测评练习题(含解析)

文档属性

名称 【精品解析】沪教版(上海)九下 第二十八章统计初步同步测评练习题(含解析)
格式 doc
文件大小 1.7MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-23 15:17:20

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个 ( http: / / www.21cnjy.com )题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在某中学举行的“筑梦路上”演讲比赛 ( http: / / www.21cnjy.com )中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )21教育网
A.平均数是89 B.众数是93
C.中位数是89 D.方差是2.8
2、如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的( )www.21-cn-jy.com
A.平均数 B.众数 C.中位数 D.方差
3、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( )
A.乙同学的成绩更稳定 B.甲同学的成绩更稳定
C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定
4、甲、乙、丙、丁四人进行射箭测试,每人1 ( http: / / www.21cnjy.com )0次射箭成绩的平均数都是9.1环,四人的方差分别是S甲2=0.63,S乙2=2.56,S丙2=0.49,S丁2=0.46,则射箭成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
5、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )
A.3和2 B.4和3 C.5和2 D.6 和2
6、下列调查方式中,适合用普查方式的是( )
A.对某市学生课外作业时间的调查 B.对神州十三号载人航天飞船的零部件进行调查
C.对某工厂生产的灯泡寿命的调查 D.对某市空气质量的调查
7、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )
A.100分 B.95分 C.90分 D.85分
8、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶,出现一次故障”是随机事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差大的更稳定
9、下列调查中,其中适合采用抽样调查的是( )
A.调查某班50名同学的视力情况
B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
C.为保证“神舟9号”成功发射,对其零部件进行检查
D.检测中卫市的空气质量
10、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a,b,c的中位数是_____【来源:21cnj*y.co*m】
2、一组数据:2,5,7,3,5的众数是________.
3、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.
4、若式子的值为非负数,则满足条件的所有整数a的方差是_____
5、七年级(5)班20名女生的身高如下(单位:cm):
153 156 152 158 156 160 163 145 152 153
162 153 165 150 157 153 158 157 158 158
(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):
身高(cm) 140~150 150~160 160~170
频数
百分比
(2)上表把身高分成___组,组距是___;
(3)身高在___范围的人数最多.
三、解答题(5小题,每小题10分,共计50分)
1、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.【来源:21·世纪·教育·网】
( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
(1) ,类所在扇形的圆心角的度数是 ,并补全频数分布直方图;
(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;
(3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.
类别 分数段 频数(人数)
A
B 16
C 24
D 6
2、某校想了解学生每周的课外阅读时间情况,随机抽取了部分学生进行调查,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:
( http: / / www.21cnjy.com / )
根据以上信息,解答下列问题:
(1)本次调查共随机抽取了_____________名学生,并补全频数分布直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数;
(3)在该校3000名学生中,每周的课外阅读时间不小于6小时的学生约有________________名.
3、为了迎接2022年高 ( http: / / www.21cnjy.com )中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:2·1·c·n·j·y
( http: / / www.21cnjy.com / )
(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整:
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是 .
(4)学校八年级共有400人参加了这次数 ( http: / / www.21cnjy.com )学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?21·世纪*教育网
4、由重庆市教育委员会主 ( http: / / www.21cnjy.com )办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:21*cnjy*com
( http: / / www.21cnjy.com / )
(1)m= ,补全条形统计图;
(2)各组得分的中位数是 分,众数是 分;
(3)若舞蹈组获得一等奖的队伍有2组 ( http: / / www.21cnjy.com ),已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?21*cnjy*com
5、某学校为了推动运动普及,拟成立多 ( http: / / www.21cnjy.com )个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有多少人;
(2)请将条形统计图和扇形统计图补充完整;
(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、D
【分析】
根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.
【详解】
∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,
从小到大排列为88,89,90,90,93,
∴平均数为,众数为90,中位数为90,
故选项A、B、C错误;
方差为,
故选项D正确.
故选:D.
【点睛】
本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.
2、C
【分析】
根据题意可得:由中位数的概念,可知7人成绩的 ( http: / / www.21cnjy.com )中位数是第4名的成绩.参赛选手要想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.2-1-c-n-j-y
【详解】
解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,
故应知道自己的成绩和中位数.
故选:C.
【点睛】
本题考查的是中位数的含义,以及利用中位数作判断,理解中位数的含义是解本题的关键.
3、A
【分析】
根据方差的定义逐项排查即可.
【详解】
解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样
∴乙同学的成绩更稳定.
故选A.
【点睛】
本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.
4、D
【分析】
根据方差的意义即可得.
【详解】
解:,且,
射箭成绩最稳定的是丁(方差越小,成绩越稳定),
故选:D.
【点睛】
本题考查了方差的意义,掌握理解方差的意义是解题关键.
5、D
【分析】
先根据平均数定义求出x,再根据方差公式计算即可求解.
【详解】
解:由题意得,
解得x=6,
∴这组数据的方差是.
故选:D
【点睛】
本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.
6、B
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;
B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;
C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;
D.对某市空气质量的调查工作量非常大,宜采用抽样调查;
故选B.
【点睛】
本题考查的是抽样调查和全面调 ( http: / / www.21cnjy.com )查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21·cn·jy·com
7、C
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.
【详解】
解:∵这组数据的平均数数是90,
∴(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
8、B
【分析】
根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【详解】
解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;
故选:B.
【点睛】
此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.
9、D
【分析】
抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.21教育名师原创作品
【详解】
A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;
B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;
C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;
D检查中卫市的空气质量,应采用抽样调查,故符合要求;
故选D.
【点睛】
本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.
10、B
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对 ( http: / / www.21cnjy.com )于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
二、填空题
1、4
【分析】
首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值.
【详解】
利用十字交乘法将5x2+17x-12因式分解,
可得:5x2+17x-12=(x+4)(5x-3)=(x+a)(bx+c).
∴,
∵的中位数是4
∴a,b,c的中位数是4
故答案为:4.
【点睛】
本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键.【出处:21教育名师】
2、5
【分析】
根据众数的概念求解.
【详解】
解:这组数据5出现的次数最多.
故众数为5.
故答案为:5,
【点睛】
本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.
3、7
【分析】
将一组数据按照从小到大的顺序进行排列, ( http: / / www.21cnjy.com )排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10
中位数:(6+8)÷2=7
故答案为:7.
【点睛】
本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.
4、##
【分析】
先求出为非负数时所有整数的值,再求出其方差即可.
【详解】
解:由题意可得,,
∴,
解得.
故的所有整数值为,,,0,1,2.
该组数的平均数为:.
方差为:.
故填.
【点睛】
此题将分式的意义、二次根式成立的条件和方差相结合,考查了同学们的综合运用数学知识能力.
5、3
10 150~160
【分析】
(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;
(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;
(3)根据所填信息确定身高在哪个范围的人数最多即可.
【详解】
(1)填表:
身高(cm) 140~150 150~160 160~170
频数 1 15 4
百分比 5% 75% 20%
(2)上表把身高分成3组,组距是10;
(3)身高在范围最多.
【点睛】
本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.
三、解答题
1、(1)2,,图见解析;(2)450人;(3).
【分析】
(1)先根据类的信息可求出调查的总人数,由此即可得出的值,再求出类所占百分比,然后乘以可得圆心角的度数,最后根据类的人数补全频数分布直方图即可;21cnjy.com
(2)利用720乘以成绩在范围内的学生所占百分比即可得;
(3)先画出树状图,从而可得随机抽取2人 ( http: / / www.21cnjy.com )进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.
【详解】
解:(1)调查的总人数为(人),
则,
类所在扇形的圆心角的度数是,
故答案为:2,,
补全频数分布直方图如图所示:
( http: / / www.21cnjy.com / )
(2)(人),
答:估计该校成绩在范围内的学生人数为450人;
(3)把类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:
( http: / / www.21cnjy.com / )
由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种,
则所求的概率为,
答:恰好只选中其中1名留守学生进行经验交流的概率为.
【点睛】
本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.
2、
(1)100,图见解析
(2),
(3)
【分析】
(1)组人数组所占百分比被调查总人数,将总人数组所占百分比组人数;
(2)组人数调查总人数,组对应的圆心角度数组占调查人数比例;
(3)将样本中课外阅读时间不小于6小时的百分比乘以3000可得.
(1)
解:(1)随机调查学生数为:(人,
课外阅读时间在小时之间的人数为:(人,
补全图形如下:
( http: / / www.21cnjy.com / )
故答案是:100;
(2)
解:,
组对应的圆心角为:;
(3)
解:(人.
估计该校3000名学生每周的课外阅读时间不小于6小时的人数约为870人,
故答案是:.
【点睛】
本题考查的是条形统计图和扇 ( http: / / www.21cnjy.com )形统计图的综合运用,解题的关键是读懂统计图,从不同的统计图中得到必要的信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.www-2-1-cnjy-com
3、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).
【分析】
(1)利用成绩为良的人数以及百分比求出总人数即可.
(2)求出成绩为中的人数,画出条形图即可.
(3)根据圆心角=360°×百分比即可.
(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.
【详解】
解:(1)总人数=22÷44%=50(人).
(2)中的人数=50 10 22 8=10(人),
条形图如图所示:
( http: / / www.21cnjy.com / )
(3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,
故答案为72°.
(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),
∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:
学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).
【点睛】
本题考查条形统计图和扇形 ( http: / / www.21cnjy.com )统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.
4、(1)25,图见详解;(2)6.5;6;(3)12
【分析】
(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;
(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;
(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.
【详解】
解:(1)(组),(组),

统计图如下:
( http: / / www.21cnjy.com / )
(2)∵8分这一组的组数为5,
∴各组得分的中位数是,
分数为6分的组数最多,故众数为6;
故答案为:6.5,6;
(3)由题可得,(组,
该展演活动共产生了12个一等奖.
【点睛】
本题主要考查了条形统计图 ( http: / / www.21cnjy.com )以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.
5、(1)人;(2)画图见解析;(3)人
【分析】
(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;
(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;
(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.
【详解】
解:(1)由喜欢足球的有100人,占比25%,可得:
本次调查的学生共有人,
(2)喜欢排球的占比为:
所以喜欢篮球的占比为:
喜欢篮球的人数为:人,
喜欢乒乓球的人数有:人,
所以补全图形如下:
( http: / / www.21cnjy.com / )
(3)该学校共有学生2000人,则选择足球运动的同学有:
人.
【点睛】
本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.【版权所有:21教育】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)