中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了解某市参加中考75000名学生的体重情况,抽查其中2000名学生的体重进行统计分析,下列叙述正确的是( )21·世纪*教育网
A.该调查是普查 B.2000名学生的体重是总体的一个样本
C.75000名学生是总体 D.每名学生是总体的一个个体
2、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )
( http: / / www.21cnjy.com / )
A.8 B.13 C.14 D.15
3、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )21教育名师原创作品
A.此次调查的总体是600名学生 B.此次调查属于全面调查
C.此次调查的个体是被抽取的学生 D.样本容量是50
4、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶,出现一次故障”是随机事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差大的更稳定
5、已知一组数据:66,66,62,68,63,这组数据的平均数和中位数分别是( )
A.66,62 B.65,66 C.65,62 D.66,66
6、新型冠状病毒肺炎(CoronaVrius ( http: / / www.21cnjy.com )Disease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
7、下列说法正确的是( )
A.调查“行云二号”各零部件的质量适宜采用抽样调查方式
B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83
C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖
D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定21教育网
8、某县为了传承中华优秀传 ( http: / / www.21cnjy.com )统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )www-2-1-cnjy-com
A.这600名学生的“中华经典诵读”大赛成绩的全体是总体
B.50名学生是总体的一个样本
C.每个学生是个体
D.样本容量是50名
9、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
10、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )
A.100分 B.95分 C.90分 D.85分
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小王参加某企业招聘测试,他的笔试、面 ( http: / / www.21cnjy.com )试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是_____.21*cnjy*com
2、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是______.
( http: / / www.21cnjy.com / )
3、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
( http: / / www.21cnjy.com / )
4、一组数据:2,5,7,3,5的众数是________.
5、数据6,3,9,7,1的极差是_________.
三、解答题(5小题,每小题10分,共计50分)
1、为了了解我市中学生参加“科普知识 ( http: / / www.21cnjy.com )”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
组别 分数段(分) 频数 频率
A组 60≤x<70 30 0.1
B组 70≤x<80 90 n
C组 80≤x<90 m 0.4
D组 90≤x<100 60 0.2
(1)在表中:m= ,n= ;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;
(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.
( http: / / www.21cnjy.com / )
2、实行垃圾分类是保护生态环 ( http: / / www.21cnjy.com )境的有效措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从A、B两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:
A小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5
B小区20位居民测试成绩的条形统计图如下:
( http: / / www.21cnjy.com / )
A、B小区抽取的居民测试成绩统计表如下:
小区 A B
平均数 7.3 a
中位数 7.5 b
众数 c 9
方差 2.41 3.51
根据以上信息,回答下列问题:
(1)填空:a= ,b= ,c= ;
(2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议.
3、西安市某中学为了搞好“创建全国文明城市 ( http: / / www.21cnjy.com )”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:
( http: / / www.21cnjy.com / )
(1)将条形统计图补充完整;
(2)本次调查测试成绩中的中位数落在______组内;
(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.
4、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:
甲校抽取的20名同学的成 ( http: / / www.21cnjy.com )绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82
已知乙校抽取的成绩中,有1名同学的成绩不超过60分.
乙校抽取的学生成绩扇形统计图
( http: / / www.21cnjy.com / )
甲、乙两校抽取的学生成绩数据统计表
班级 甲校 乙校
平均数 78.6 78.4
中位数 b 80
众数 c 80
根据以上信息,解答下列问题:
(1)直接写出上述图表中a、b、c的值: , , ;
(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;
(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?
5、会宁县教育局为了了解初三男生引体向上的成绩情况,随机抽测了本区部分学校初三男生,并将测试成绩绘成了如下两幅不完整的统计图.
( http: / / www.21cnjy.com / )
请你根据图中的信息,解答下列问题:
(1)写出扇形图中 ,并补全条形图;
(2)在这次抽测中,测试成绩的众数和中位数分别是 个, 个;
(3)该区初三年级共有男生1800人,如果引体向上达6个以上(含6个)得满分,请你估计该区男生的引体向上成绩能获得满分的有多少名?
-参考答案-
一、单选题
1、B
【分析】
根据抽样调查、全面调查、 ( http: / / www.21cnjy.com )总体、个体、样本的相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本)进行分析.
【详解】
解:根据题意可得:
该调查为抽样调查,不是普查,A选项错误,不符合题意;
2000名学生的体重是总体的一个样本,B 选项正确,符合题意;
75000名学生的体重情况是总体,C选项错误,不符合题意;
每名学生的体重是总体的一个个体,D选项错误,不符合题意;
故选B.
【点睛】
本题考查了抽样调查、全面调查、总体、个体 ( http: / / www.21cnjy.com )、样本相关概念.解题关键是理解相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本).21世纪教育网版权所有
2、C
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.
3、D
【分析】
总体是指考查的对象的全体,个体是总体中的每 ( http: / / www.21cnjy.com )一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;
B、此次调查属于抽样调查,故本选项不合题意;
C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;
D、样本容量是50.故本选项符合题意.
故选:D.
【点睛】
本题考查了数据的收集,解题要分清具体问 ( http: / / www.21cnjy.com )题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
4、B
【分析】
根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【详解】
解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;
故选:B.
【点睛】
此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.
5、B
【分析】
根据平均数的计算公式(,其中是平均数,是这组数据,是数据的个数)和中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得.
【详解】
解:这组数据的平均数是,
将这组数据按从小到大进行排序为,
则这组数据的中位数是66,
故选:B.
【点睛】
本题考查了平均数和中位数,熟记公式和定义是解题关键.
6、A
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
7、B
【分析】
分别对各个选项进行判断,即可得出结论.
【详解】
解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;
B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;
C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;
D、某校举办了一次生活大百科知 ( http: / / www.21cnjy.com )识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;
故选:B.
【点睛】
本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.
8、A
【分析】
根据总体的定义:表示考察 ( http: / / www.21cnjy.com )的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;
B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;
C、每个学生的成绩是个体,故本选项错误,不符合题意;
D、样本容量是50,故本选项错误,不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.
9、C
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择 ( http: / / www.21cnjy.com )普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、C
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.
【详解】
解:∵这组数据的平均数数是90,
∴(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
二、填空题
1、86.5
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
80×+85×+90×,
=16+25.5+45,
=86.5(分),
故答案为:86.5.
【点睛】
本题考查了加权平均数,解题的关键是掌握加权平均数的计算公式.
2、10
【分析】
求出每天的最高气温与最低气温的差,再比较大小即可.
【详解】
解:∵由折线统计图可知,
15日温差=4 ( 3)=7;
16日温差=4 ( 6)=10;
17日温差=2 ( 6)=8;
18日温差=2 ( 2)=4;
19日温差=1 ( 5)=6;
20日温差=1 ( 1)=2;
∴最大的温差是10.
故答案为:10.
【点睛】
本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.【出处:21教育名师】
3、1
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360o-(60o+30o+120o+135o)=15o,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
4、5
【分析】
根据众数的概念求解.
【详解】
解:这组数据5出现的次数最多.
故众数为5.
故答案为:5,
【点睛】
本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.
5、8
【分析】
根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.
【详解】
解:数据6,3,9,7,1的极差是
故答案为:
【点睛】
本题考查了极差定义,理解极差的定义是解题的关键.
三、解答题
1、(1)120,0.3;(2)见解析;(3)C;(4) .
【分析】
(1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得m、n的值;
(2)根据(1)中所求结果即可补全频数分布直方图;
(3)根据中位数的定义即可求解;
(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得.
【详解】
解:(1)∵本次调查的总人数为30÷0.1=300(人),
∴m=300×0.4=120,n=90÷300=0.3,
故答案为:120,0.3;
(2)补全频数分布直方图如下:
( http: / / www.21cnjy.com / )
(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,
而第150、151个数据的平均数均落在C组,
∴据此推断他的成绩在C组,
故答案为:C;
(4)画树状图如下:
( http: / / www.21cnjy.com / )
由树状图可知,共有12种等可能结果,其中抽中A、C两组同学的有2种结果,
∴抽中A、C两组同学的概率为.
【点睛】
本题主要考查概率及数据统计,解题的关键是根据表格得到基本信息.
2、(1)7.3、7.5、8;(2)A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).21·cn·jy·com
【分析】
(1)根据平均数、众数和中位数的定义求解即可;
(2)根据平均数、中位数、方差的意义求解即可.
【详解】
解:(1)A小区20位居民的测试成绩中8分出现次数最多,有5次,
∴A小区的众数c=8,
有统计图数据可知B小区20位居民的测试成绩的平均数a==7.3,
∵B小区一共有20位居民参加测试,
∴B小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,www.21-cn-jy.com
∴B小区20位居民的测试成绩的中位数b==7.5,
故答案为:7.3、7.5、8;
(2)比较A、B小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A小区测试成绩的方差小于B小区,2-1-c-n-j-y
∴A小区测试成绩波动幅度小;
建议:加强对B小区保护生态环境意识(答案不唯一).
【点睛】
本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键.21*cnjy*com
3、(1)见解析;(2)B;(3)1620人.
【分析】
(1)先由A组人数及其所占百分比求出总人数,总人数乘以B组对应百分比即可求出其人数,从而补全图形;
(2)根据中位数的定义求解;
(3)总人数乘以样本A、B组对应百分比之和即可.
【详解】
解:(1)因为被调查的总人数为40÷10%=400(人)
所以B组人数为400×35%=140(人),
补全图形如下,
( http: / / www.21cnjy.com / )
(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,【来源:21cnj*y.co*m】
故答案为:B;
(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)
答:估计全校学生测试成绩为优秀的总人数为1620人.
【点睛】
本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.
4、(1),,;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【版权所有:21教育】
【分析】
(1)B等的人数=20-20×(10+10+35)-1=8,
于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;
(2)比较平均数,中位数,众数的大小,判断即可;
(3)甲校约有人,乙校约有人,求和即可.
【详解】
(1)∵B等的人数=20-20×(10+10+35)-1=8,
∴,
∴a=40;
∵第10个,11个数据是80,82,
∴b=;
∵82出现次数最多,是5次,
∴众数c=82;
故答案为:40,81,82;
(2)甲校的成绩好一些,
因为甲校成绩的平均数、众数和中位数都高于乙校,
所以甲校的成绩要好一些;
(3)由题意,甲校约有人,乙校约有人,
∴两校共约有63+45=108人的成绩达到A级.
【点睛】
本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.
5、(1)50;补全条形统计图见解析;(2)5,5(3)810名
【分析】
(1)根据引体向上达3个的人数占10%即可求得总人数,进而根据总人数减去其他的即可求得引体向上达6个的人数,进而即可求得的值,并补全统计图;【来源:21·世纪·教育·网】
(2)根据(1)中的条形统计图直接可得众数;根据总人数为人,进而求得中位数为第100个与第101个的平均数,根据条形统计图即可判断中在体向上5个这一组,即可得中位数;
(3)根据题意用1800乘以45%即可求得该区男生的引体向上成绩能获得满分的人数.
【详解】
(1)
总人数为:(人)
引体向上达6个的人数为:(人)
补全图形如图:
( http: / / www.21cnjy.com / )
故答案为:
(2)根据条形统计图可知,引体向上达5个的人数最多,有60人;则众数为5,
根据总人数为人,进而求得中位数为第100个与第101个的平均数,根据条形统计图即可判断中在体向上5个这一组,则中位数为5
在这次抽测中,测试成绩的众数和中位数分别是5,5
故答案为:5,5
(3)(人)
该区男生的引体向上成绩能获得满分的有810人
【点睛】
本题考查了样本估计总体,条形统计图与扇形统计图信息关联,求某项所占百分比,求众数与中位数,从统计图中获取信息是解题的关键.2·1·c·n·j·y
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)