沪教版(上海)九下 第二十八章统计初步章节测评练习题(精选,含解析)

文档属性

名称 沪教版(上海)九下 第二十八章统计初步章节测评练习题(精选,含解析)
格式 doc
文件大小 1.4MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-23 15:26:25

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www-2-1-cnjy-com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某小组同学在一周内参加家务劳动的时间表所示,关于“劳动时间”的这组数据,以下说法正确的是( )21*cnjy*com
劳动时间(小时) 3 3.5 4.5 4
人数 1 1 1 2
A.中位数是4.5,平均数是3.75 B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
2、下列调查中,最适合采用普查方式的是(  )
A.调查一批电脑的使用寿命
B.调查某航班的乘客是否都持有“绿色健康码”
C.了解我市初中生的视力情况
D.调查河南卫视“中秋奇妙游”节目的收视率
3、小颖同学参加学校举办的“抗 ( http: / / www.21cnjy.com )击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为( )
A.84分 B.85分 C.86分 D.87分
4、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册 1 2 3 4 5
人数/人 2 5 7 4 2
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A.3,3 B.3,7 C.2,7 D.7,3
5、下列采用的调查方式中,不合适的是  
A.了解一批灯泡的使用寿命,采用普查
B.了解神舟十二号零部件的质量情况,采用普查
C.了解单县中学生睡眠时间,采用抽样调查
D.了解中央电视台《开学第一课》的收视率,采用抽样调查
6、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )
A.6 B.5 C.4 D.3
7、下列调查中,最适合采用抽样调查的是(  )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
8、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是( )
A.200名学生的视力是总体的一个样本 B.200名学生是总体
C.200名学生是总体的一个个体 D.样本容量是1200名
9、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:
甲 乙 丙
平均数/分 96 95 97
方差 0.4 2 2
丁同学五轮预选赛的成绩依 ( http: / / www.21cnjy.com )次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )2-1-c-n-j-y
A.甲 B.乙 C.丙 D.丁
10、新型冠状病毒肺炎(CoronaV ( http: / / www.21cnjy.com )riusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在5个正整数a、b、c、d、e中,中位数是4,唯一的众数是6,则这5个数的和最大值是________.
2、已知一组数据2,13,31的权数分别是0.2,0.3,0.5,则这组数据的加权平均数是_______.
3、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.
4、在求n个数的平均数时,如果 ( http: / / www.21cnjy.com )x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+f2+…+fk=n),那么这n个数的平均数为______,也叫做x1,x2,x3,…,xk这k个数的______,其中f1,f2,…,fk分别叫做x1,x2,…,xk的_____.
5、甲乙两人参加竞聘,笔试 ( http: / / www.21cnjy.com )和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____
三、解答题(5小题,每小题10分,共计50分)
1、为了迎接2022年高中招生考试, ( http: / / www.21cnjy.com )师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:
( http: / / www.21cnjy.com / )
(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整:
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是 .
(4)学校八年级共有400人参 ( http: / / www.21cnjy.com )加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?21·世纪*教育网
2、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
意见 非常不满意 不满意 有一点满意 满意
人数 200 160 32 8
百分比
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
( http: / / www.21cnjy.com / )
3、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:www.21-cn-jy.com
甲校抽取的20名同学的成绩(单位:分)为 ( http: / / www.21cnjy.com ):91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,8221教育名师原创作品
已知乙校抽取的成绩中,有1名同学的成绩不超过60分.
乙校抽取的学生成绩扇形统计图
( http: / / www.21cnjy.com / )
甲、乙两校抽取的学生成绩数据统计表
班级 甲校 乙校
平均数 78.6 78.4
中位数 b 80
众数 c 80
根据以上信息,解答下列问题:
(1)直接写出上述图表中a、b、c的值: , , ;
(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;
(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?【来源:21·世纪·教育·网】
4、为促进学生健康成长,帮助家长解决按 ( http: / / www.21cnjy.com )时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com / )
(1)求出本次调查中,随机抽取的学生人数;
(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;
(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?
5、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:【出处:21教育名师】
序号 1号 2号 3号 4号 5号 6号
笔试成绩/分 85 92 84 90 84 80
面试成绩/分 90 88 86 90 80 85
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(综合成绩的满分仍为100分)
(1)这6名选手笔试成绩的众数是________分.
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
-参考答案-
一、单选题
1、C
【分析】
根据平均数、众数和中位数的概念求解.
【详解】
解:平均数为:(3+3.5+4×2+4.5)÷5=3.8,
这组数据中4出现的次数最多,众数为4,
∵共有5个人,
∴第3个人的劳动时间为中位数,
∴中位数为4.
故选:C.
【点睛】
本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.
2、B
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A.调查一批电脑的使用寿命,适合采用抽样调查的方式,故本选项不合题意;
B.调查某航班的乘客是否都持有“绿色健康码”,适合采用普查的方式,故本选项符合题意;
C.了解我市初中生的视力情况,适合采用抽样调查的方式,故本选项不合题意;
D.调查央视“五一晚会”的收视率,适合采用抽样调查的方式,故本选项不合题意.
故选:B.
【点睛】
本题考查了抽样调查和全面 ( http: / / www.21cnjy.com )调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21cnjy.com
3、D
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
【详解】
解:根据题意得:
86×50%+90×40%+80×10%
=43+36+8
=87(分).
故选:D.
【点睛】
本题考查的是加权平均数的求法,本题易出现的错误是求86,90,80这三个数的算术平均数,对平均数的理解不正确.【版权所有:21教育】
4、A
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
5、A
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】
解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;
、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;
、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;
、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还 ( http: / / www.21cnjy.com )是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、B
【分析】
本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
【详解】
解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,
∴x=5×7 4 4 5 6 6 7=3,
∴这一组数从小到大排列为:3,4,4,5,6,6,7,
∴这组数据的中位数是:5.
故选:B.
【点睛】
本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.
7、A
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的 ( http: / / www.21cnjy.com )区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2·1·c·n·j·y
8、A
【分析】
根据总体,样本,个体,样本容量的定义,即可得出结论.
【详解】
解:A.200名学生的视力是总体的一个样本,故本选项正确;
B.学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;
C.学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;
D.样本容量是1200,故本选项错误.
故选:A.
【点睛】
本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.
9、D
【分析】
首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.
【详解】
解:根据题意,
丁同学的平均分为:,
方差为:;
∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,
∴应该选择丁同学去参赛;
故选:D.
【点睛】
本题考查了平均数和方差,方差是用来衡量一组 ( http: / / www.21cnjy.com )数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21*cnjy*com
10、A
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
二、填空题
1、21
【分析】
根据题意设出五个数,由此求出符合题意的五个数的可能取值,计算其和即可.
【详解】
设五个数从小到大为a1,a2,a3,a4,a5,
依题意得a3=4,a4=a5=6,
a1,a2是1,2,3中两个不同的数,
符合题意的五个数可能有三种情形:
“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,
1+2+4+6+6=19,1+3+4+6+6=20,2+3+4+6+6=21,
则这5个数的和最大值是21.
故答案为21.
【点睛】
本题考查了根据一组数据的中位数和众数来确 ( http: / / www.21cnjy.com )定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
2、19.8
【分析】
根据加权平均数的计算公式求解即可,加权平均数计算公式为:,其中代表各数据的权.
【详解】
依题意可知,加权平均数为:.
故答案为:19.8.
【点睛】
本题考查了加权平均数,掌握是加权平均数的计算公式解题的关键.
3、0.4
【分析】
先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;
【详解】
由题可知:第四小组的频数,
频率=频数÷样本容量;
故答案是0.4.
【点睛】
本题主要考查了频率和频数的计算,准确分析计算是解题的关键.
4、 加权平均数 权
【分析】
利用加权平均数的相关定义,即可作答.
【详解】
解:利用加权平均数的定义可得:n个数的平均数为
对应地叫做这些数据的加权平均数,对应的f1,f2,…,fk叫做权,
故答案为:,加权平均数,权.
【点睛】
本题主要是考查了加权平均数的相关概念,熟练掌握加权平均数的概念,是求解该题的关键.
5、a>1.5b
【分析】
先表示甲乙的加权平均分,再根据甲被录取列不等式即可.
【详解】
甲的加权平均分为:90a+80b
乙的加权平均分为:84a+89b
∵甲被录取
∴甲的分数>乙的分数
∴90a+80b>84a+89b,
解得a>1.5b,
故答案为:a>1.5b.
【点睛】
本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.
三、解答题
1、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).
【分析】
(1)利用成绩为良的人数以及百分比求出总人数即可.
(2)求出成绩为中的人数,画出条形图即可.
(3)根据圆心角=360°×百分比即可.
(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.
【详解】
解:(1)总人数=22÷44%=50(人).
(2)中的人数=50 10 22 8=10(人),
条形图如图所示:
( http: / / www.21cnjy.com / )
(3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,
故答案为72°.
(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),
∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:
学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).
【点睛】
本题考查条形统计图和扇形统 ( http: / / www.21cnjy.com )计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.
2、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.
【分析】
(1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
【详解】
解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
( http: / / www.21cnjy.com / )
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,
( http: / / www.21cnjy.com / )

( http: / / www.21cnjy.com / )
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
【点睛】
此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
3、(1),,;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人21教育网
【分析】
(1)B等的人数=20-20×(10+10+35)-1=8,
于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;
(2)比较平均数,中位数,众数的大小,判断即可;
(3)甲校约有人,乙校约有人,求和即可.
【详解】
(1)∵B等的人数=20-20×(10+10+35)-1=8,
∴,
∴a=40;
∵第10个,11个数据是80,82,
∴b=;
∵82出现次数最多,是5次,
∴众数c=82;
故答案为:40,81,82;
(2)甲校的成绩好一些,
因为甲校成绩的平均数、众数和中位数都高于乙校,
所以甲校的成绩要好一些;
(3)由题意,甲校约有人,乙校约有人,
∴两校共约有63+45=108人的成绩达到A级.
【点睛】
本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.21世纪教育网版权所有
4、(1)120人;(2)见解析,36°;(3)126人
【分析】
(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;
(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;
(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.
【详解】
解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,
本次调查人数为:(人);
(2)∵艺术:(人),
∴补全的条形统计图如下图所示:
( http: / / www.21cnjy.com / )
“其他”所对应的圆心角度数为;
(3)样本中选择阅读的人数为18人,占样本的百分比为,
该校学生总人数为840人,估计选择阅读的学生有:(人),
∴选择“阅读”的学生大约有126人.
【点睛】
本题考查从条形图和扇形统计图 ( http: / / www.21cnjy.com )获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.21·cn·jy·com
5、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)4号和2号
【分析】
(1)根据众数的定义找出出现的次数最多的数即是众数;
(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
【详解】
(1)84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;
故答案为84;
(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:
,解得:,
笔试成绩和面试成绩各占的百分比是40%,60%;
(3)2号选手的综合成绩是(分),
3号选手的综合成绩是(分),
4号选手的综合成绩是(分),
5号选手的综合成绩是(分),
6号选手的综合成绩是(分),
则综合成绩排序前两名人选是4号和2号
【点睛】
此题考查了加权平均数,用到的知识点是众数、加权平均数的计算公式,关键是灵活运用有关知识列出算式.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)