沪教版(上海)九下 第二十八章统计初步课时练习试卷(无超纲,含解析)

文档属性

名称 沪教版(上海)九下 第二十八章统计初步课时练习试卷(无超纲,含解析)
格式 doc
文件大小 1.8MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-24 08:40:27

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题 ( http: / / www.21cnjy.com )目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,最适合采用抽样调查的是(  )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
2、甲、乙、丙、丁四名跳高运动 ( http: / / www.21cnjy.com )员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )21教育网
甲 乙 丙 丁
平均数/m 180 180 185 185
方差 8.2 3.9 75 3.9
A.甲 B.乙 C.丙 D.丁
3、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本21·cn·jy·com
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
4、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )
( http: / / www.21cnjy.com / )
A.得分在70~80分的人数最多 B.组距为10
C.人数最少的得分段的频数为2 D.得分及格(≥60)的有12人
5、某中学规定学生的学期体育成绩满分为 ( http: / / www.21cnjy.com )100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89 B.90 C.91 D.92
6、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对渝北区初中学生对防护新冠肺炎知识的了解程度的调查
B.对“神州十三号”飞船零部件安全性的检查
C.对某品牌手机电池待机时间的调查
D.对中央电视台2021年春节联欢晚会满意度的调查
7、在某中学举行的“筑梦路上”演讲比赛中, ( http: / / www.21cnjy.com )八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )21cnjy.com
A.平均数是89 B.众数是93
C.中位数是89 D.方差是2.8
8、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是( )www.21-cn-jy.com
A.5 B.4.5 C.25 D.24
9、下列说法正确的是( )
A.的相反数是2
B.各边都相等的多边形叫正多边形
C.了解一沓钞票中有没有假钞,应采用普查的形式
D.若线段,则点B是线段AC的中点
10、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是(  )
A.0.6 B.6 C.0.4 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______.www-2-1-cnjy-com
甲 乙
平均数 368 320
方差 2.5 5.6
2、一组数据的平均数是4,则这组数据的方差是_________.
3、2021年徐州某一周各日的空气污染指数为127,98,78,85,95,191,70,这组数据的中位数是______.21*cnjy*com
4、一组数据7,2,1,3的极差为______.
5、八年级(1)、(2)两班人数相同,在同一次数学单元测试中,班级平均分和方差如下:则成绩较为稳定的班级是___.【来源:21cnj*y.co*m】
三、解答题(5小题,每小题10分,共计50分)
1、贵州省教育厅下发了《在全省中 ( http: / / www.21cnjy.com )小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:
( http: / / www.21cnjy.com / )
(1)本次抽样调查了多少名学生?
(2)补全两幅统计图;
(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?
2、 “网上购物”已成为现代人们的生活方式 ( http: / / www.21cnjy.com ).某电商平台在A地区随机抽取了100位居民进行调查,获得了他们每个人近七天“网上购物”消费总金额(单位:元),整理得到右边频率统计表:
消费总金额x 频率
0.11
0.24
0.3
0.2
0.1
0.04
0.01
(1)求被调查居民“网上购物”消费总金额不低于500元的频率;
(2)假设同一组中的数据用该组数据所在范围的组中值(如一组,取)为准,求该地区消费总金额的平均值;
(3)若A地区有100万居民,该平台为了促销 ( http: / / www.21cnjy.com ),拟对消费总金额不到200元的居民提供每人10元的优惠,试估计该平台在A地区拟提供的优惠总金额.
3、学校组织开展了社团活动 ( http: / / www.21cnjy.com ),分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:
( http: / / www.21cnjy.com / )
(1)此次共调查了多少人?
(2)通过计算将条形统计图补充完整;
(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?
4、山西某高校为了弘扬女排 ( http: / / www.21cnjy.com )精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.21*cnjy*com
( http: / / www.21cnjy.com / )
(1)填空:该排球社团一共有    名女同学,a=   .
(2)把频数分布直方图补充完整.
(3)随机抽取1名学生,估计这名学生身高高于160cm的概率.
5、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:
频数分布表
分数段 频数 百分比
80≤x<85 a 20%
85≤x<90 80 b
90≤x<95 60 30%
95≤x<100 20
( http: / / www.21cnjy.com / )
根据以上图表提供的信息,解答下列问题:
(1)写出表中a、b的数值:a ,b ;
(2)补全频数分布表和频数分布直方图;
(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.【来源:21·世纪·教育·网】
-参考答案-
一、单选题
1、A
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的区 ( http: / / www.21cnjy.com )别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21教育名师原创作品
2、D
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵,
∴从丙和丁中选择一人参加比赛,
∵S丙2>S丁2,
∴选择丁参赛,
故选:D.
【点睛】
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
3、D
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学 ( http: / / www.21cnjy.com )生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
4、D
【分析】
根据统计图中各分数的人数最大判断A正确,由横轴的数据差判断B正确,由各分数的人数最少判断C正确,由及格的人数相加判断D错误.
【详解】
解:A. 得分在70~80分的人数最多,故该项不符合题意;
B. 组距为10,故该项不符合题意;
C. 人数最少的得分段的频数为2,故该项不符合题意;
D. 得分及格(≥60)的有12+14+8+2=36人,故该项符合题意;
故选:D.
【点睛】
此题考查了条形统计图,正确理解横轴及纵轴的意义,掌握各分数的对应人数是解题的关键.
5、B
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
6、B
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、对渝北区初中学生对防护新冠肺炎知识的了解程度的调查,适合采用抽样调查方式,故本选项不符合题意;
B、对“神州十三号”飞船零部件安全性的检查,适合采用全面调查(普查)方式,故本选项符合题意;
C、对某品牌手机电池待机时间的调查,适合采用抽样调查方式,故本选项不符合题意;
D、对中央电视台2021年春节联欢晚会满意度的调查,适合采用抽样调查方式,故本选项不符合题意;
故选:B
【点睛】
本题考查的是抽样调查和全面调查的区 ( http: / / www.21cnjy.com )别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、D
【分析】
根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.
【详解】
∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,
从小到大排列为88,89,90,90,93,
∴平均数为,众数为90,中位数为90,
故选项A、B、C错误;
方差为,
故选项D正确.
故选:D.
【点睛】
本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.
8、C
【分析】
根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.
【详解】
解:由题意可知:25出现了5次,出现次数最多,所以众数为25.
故选:C.
【点睛】
本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.
9、C
【分析】
根据相反数、正多边形、抽样调查、中点的相关定义逐项判断即可.
【详解】
解:A. 的相反数是-2,原选项不正确,不符合题意;
B. 各边都相等,各角都相等的多边形叫正多边形,原选项不正确,不符合题意;
C. 了解一沓钞票中有没有假钞,应采用普查的形式,原选项正确,符合题意;
D. A、B、C三点共线时,若线段,则点B是线段AC的中点,Am、B、C三点不共线时,则说法不成立,原选项不正确,不符合题意;2·1·c·n·j·y
故选:C.
【点睛】
本题考查了相反数、正多边形、全面调查和线段的中点,解题关键是熟记相关知识,准确进行判断.
10、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
二、填空题
1、甲
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.
【点睛】
此题考查了平均数和方差,方差是用来衡量一 ( http: / / www.21cnjy.com )组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2-1-c-n-j-y
2、
【分析】
先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.
【详解】
解:因为数据4,3,6,x的平均数是4,
可得:,
解得:x=3,
方差为:=,
故答案为:.
【点睛】
本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.
3、95
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将这组数据从小到大排列得:70,78,85,95,98,127,191,
中间位置的数为:95,所以中位数为95.
故答案为:95.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
4、6
【分析】
根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.
【详解】
解:一组数据7,2,1,3的极差为,
故答案为:.
【点睛】
本题考查了极差的定义,熟记定义是解本题的关键.
5、甲班
【分析】
根据平均数相同,方差反应一组数据与平均数的离散程度越小说明比较稳定即可得出结论.
【详解】
解:∵两班的平均成绩相同,,根据方差反应一组数据与平均数的离散程度越小说明比较稳定,
∴成绩较为稳定的班级是甲班,
故答案为甲班.
【点睛】
本题考查平均数与方差,掌握平均数的 ( http: / / www.21cnjy.com )求法与方差的求法,熟练方差反应一组数据与平均数的离散程度,方差越大离散的程度越大,方差越小离散程度越小,越稳定,与整齐等是解题关键.
三、解答题
1、 (1) 120(名);(2) 补全统计图见详解(3)855(名).
【分析】
(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;
(2) 利用(1)中的数据计算出C组的人数,在计算出A和B的百分比即可;
(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可.【出处:21教育名师】
【详解】
解:(1)抽样调查的学生人数为6÷5%=120(名);
(2)A的百分比:×100%=30%,
B的百分比:×100%=45%,
C组的人数:120×20%=24名;
补全统计图,如图所示:
( http: / / www.21cnjy.com / )
(3)对“节约教育”内容“了解较多”的有1900×45%=855(名).
【点睛】
本题考查的是条形统计图和扇形统计 ( http: / / www.21cnjy.com )图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量.【版权所有:21教育】
2、(1)0.05;(2)260元;(3)350万元
【分析】
(1)根据表格数据,将不低于500的频率相加即可;
(2)根据组中值乘以对应的频率即可求得该地区消费总金额的平均值;
(3)根据表中消费总金额不到200元的频率乘以100万即可求得该平台在A地区拟提供的优惠总金额.
【详解】
解:(1)被调查居民“网上购物”消费总金额不低于500元的频率为0.04+0.01=0.05
(2)该地区消费总金额的平均值为(元)
(3)(万元)
【点睛】
本题考查了根据频率求频数,根据组中值求平均数,根据样本求总体,掌握频数与频率的关系是解题的关键.
3、(1)200人;(2)画图见解析;(3)600人
【分析】
(1)由喜欢体育类的有80人,占比40%,再列式计算即可;
(2)先分别求解喜欢其它与喜欢艺术的人数,再补全图形即可;
(3)由总人数乘以样本中喜欢体育类的占比即可得到答案.
【详解】
解:(1)由喜欢体育类的有80人,占比40%,可得
此次共调查人
(2)由喜欢文学的有60人,则占比:
所以喜欢其它的占比:
则有:人,
喜欢艺术的有:人,
补全图形如下:
( http: / / www.21cnjy.com / )
(3)该校有1500名学生,喜欢体育类社团的学生有:
人.
【点睛】
本题考查的是从条形图与扇形图中获取信息,补全条形统计图,利用样本估计总体,掌握“获取条形图与扇形图的互相关联的信息”是解本题的关键.
4、(1)100,30;(2)见解析;(3)0.55
【分析】
(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;
(2)根据(1)中的结论补全统计图即可;
(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率
【详解】
解:(1)总人数为:;
组的人数为
故答案为:
(2)如图,
( http: / / www.21cnjy.com / )
(3)总人数为,身高高于160cm为
随机抽取1名学生,估计这名学生身高高于160cm的概率为
【点睛】
本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键.
5、(1)40,40%;(2)见解析;(3)100人.
【分析】
(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;
(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;
(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.
【详解】
解:
(1)∵抽查的学生总数为:(人),
∴;

故答案为:40;40%;
(2)成绩在的学生人数所占百分比为:,
故频数分布表为:
分数段 频数 百分比
80≤x<85 40 20%
85≤x<90 80 40%
90≤x<95 60 30%
95≤x<100 20 10%
频数分布直方图为:
( http: / / www.21cnjy.com / )
(3)该校参加此次活动获得一等奖的人数为:(人),
答:估计该校参加此次活动获得一等奖的人数是100人.
【点睛】
本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.21·世纪*教育网
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)