中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是92分,方差分别是,,,,则这5次测试成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
2、下列说法中,正确的是( )
A.若,,则
B.90′=1.5°
C.过六边形的每一个顶点有4条对角线
D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
3、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行了初步测试,测试成绩如表:www.21-cn-jy.com
应聘者项目 甲 乙 丙 丁
学历 8 9 7 6
经验 6 4 8 8
工作态度 7 7 6 5
如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是( )www-2-1-cnjy-com
A.甲 B.乙 C.丙 D.丁
4、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )21*cnjy*com
A.6 B.5 C.4 D.3
5、下列调查中,适合用全面调查的方式收集数据的是( )
A.对某市中小学生每天完成作业时间的调查
B.对全国中学生节水意识的调查
C.对某班全体学生新冠疫苗接种情况的调查
D.对某批次灯泡使用寿命的调查
6、为了解甲、乙、丙、丁四位选手 ( http: / / www.21cnjy.com )射击水平,随机让四人各射击10次,计算四人10次射击命中环数平均数都是9.3环,方差(环2)如下表.则这四位选手成绩最稳定的是( )
选手 甲 乙 丙 丁
方差 0.035 0.016 0.022 0.025
A.甲 B.乙 C.丙 D.丁
7、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
8、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.乙比甲稳定 B.甲比乙稳定
C.甲和乙一样稳定 D.甲、乙稳定性没法对比
9、数字“20211202”中,数字“2”出现的频数是( )
A.1 B.2 C.3 D.4
10、下列调查中,其中适合采用抽样调查的是( )
A.调查某班50名同学的视力情况
B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
C.为保证“神舟9号”成功发射,对其零部件进行检查
D.检测中卫市的空气质量
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校学生会调查本校学生 ( http: / / www.21cnjy.com )课外阅读情况,对学生喜爱的书籍进行分类统计,其中“名人传记类”的频数为96人,频率为0.2,那么被调查的学生人数为__________人.【来源:21·世纪·教育·网】
2、小宇调查了初一年级三个班学生的身高,并进行了统计,列出如下频数分布表:
身高/厘米频数班级 150≤x<155 155≤x<160 160≤x<165 165≤x<170 170≤x<175 合计
1班 1 8 12 14 5 40
2班 10 15 10 3 2 40
3班 5 10 10 8 7 40
若要从每个班级中选取10名身高在 ( http: / / www.21cnjy.com )160cm和170cm之间同学参加学校的广播操展示,不考虑其他因素的影响,则 _____(填“1班”,“2班”或“3班”)的可供挑选的空间最大.
3、数据1,2,4,5,2的众数是 _____.
4、为了了解学生对《未成年人保护法》的知 ( http: / / www.21cnjy.com )晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.21·cn·jy·com
( http: / / www.21cnjy.com / )
5、七年级(5)班20名女生的身高如下(单位:cm):
153 156 152 158 156 160 163 145 152 153
162 153 165 150 157 153 158 157 158 158
(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):
身高(cm) 140~150 150~160 160~170
频数
百分比
(2)上表把身高分成___组,组距是___;
(3)身高在___范围的人数最多.
三、解答题(5小题,每小题10分,共计50分)
1、随着经济的发展,我们身 ( http: / / www.21cnjy.com )边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:2-1-c-n-j-y
废旧电池数/节 3 4 5 6 8
人数/人 10 15 12 7 6
(1)这50名学生平均每人收集废旧电池多少节?
(2)这组废旧电池节数的中位数,众数分别是多少?
(3)根据统计发现,本次收集的各种废旧电池的 ( http: / / www.21cnjy.com )数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?【出处:21教育名师】
2、甲、乙、丙三名候选人要参加学校学生 ( http: / / www.21cnjy.com )会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.【版权所有:21教育】
答辩、笔试成绩统计表
人员 甲 乙 丙
答辩成绩(分) 95 88 86
笔试成绩(分) 80 86 90
( http: / / www.21cnjy.com / )
根据以上信息,请解答下列问题.
(1)参加投票的共有________人,乙的得票率是________.
(2)补全条形统计图.
(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.21*cnjy*com
3、智能手机等高科技产品正越来越严重地 ( http: / / www.21cnjy.com )伤害青少年的眼睛,保护视力,刻不容缓.某中学为了解学生的视力状况,培养学生保护视力的意识,对八年级部分学生做了一次主题为“保护视力永康降度”的调查活动,根据近视程度的不同将学生分为A、B、C、D、E五类,其中A表示视力良好、B表示轻度近视(300度以下)、C表示中度近视(300度~600度)、D表示高度近视(600度~900度)、E表示超高度近视(900度以上).学校根据调查情况进行了统计,并绘制了如下两幅不完整的统计图:
( http: / / www.21cnjy.com / )
请你结合图中信息,解答下列问题:
(1)参与本次调查活动的学生有 人,
(2)求出C与E的人数,并补全条形统计图;
(3)求出超高度近视在扇形图中所对应的圆心角的度数.
4、长沙作为新晋的网红城市,旅游业快速发展, ( http: / / www.21cnjy.com )岳麓区共有A、B、C、D、E等网红景点,区旅游部门统计绘制出2021年“国庆”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:21cnjy.com
( http: / / www.21cnjy.com / )
(1)2021年“国庆”长假期间,岳麓区旅游景点共接待游客 万人.并补全条形统计图;
(2)在等可能性的情况下,甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.
5、某台风给香港造成了重大的损失,某中学开展爱心捐助活动,根据预备年级的捐款情况绘制统计图.
请根据统计图给出得信息回答下列问题:
( http: / / www.21cnjy.com / )
(1)本次活动中预备年级共有______名同学捐款?
(2)本次活动种捐款20元以上(不包括捐款20元的)人数占预备年级捐款总人数的几分之几?(写出过程)【来源:21cnj*y.co*m】
-参考答案-
一、单选题
1、D
【分析】
根据方差越大,则数据的离散程度越大,稳定性也越小;反之,则数据的离散程度越小,稳定性越好,进而分析即可.
【详解】
解:∵,,,,
∴S丁2<S丙2<S乙2<S甲2,
∴成绩最稳定的是丁.
故选:D.
【点睛】
本题考查了方差的意义,方差是用来衡 ( http: / / www.21cnjy.com )量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
2、B
【分析】
由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.21教育网
【详解】
解:若,则故A不符合题意;
90′=故B符合题意;
过六边形的每一个顶点有3条对角线,故C不符合题意;
疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
故选:B.
【点睛】
本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
3、A
【分析】
根据图表数据利用计算加权平均数的方法直接求出甲、乙、丙、丁四名应聘者的加权平均数,两者进行比较即可得出答案.
【详解】
解:甲的最终得分:8×30%+6×30%+7×40%=7,
乙的最终得分:9×30%+4×30%+7×40%=6.7,
丙的最终得分:7×30%+8×30%+6×40%=6.9,
丁的最终得分:6×30%+8×30%+5×40%=6.2,
∴甲>丙>乙>丁,
故选A.
【点睛】
本题考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
4、B
【分析】
本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
【详解】
解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,
∴x=5×7 4 4 5 6 6 7=3,
∴这一组数从小到大排列为:3,4,4,5,6,6,7,
∴这组数据的中位数是:5.
故选:B.
【点睛】
本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.
5、C
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.21·世纪*教育网
【详解】
解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;
B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;
C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;
D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是抽样调查和全面调查的区别,注意 ( http: / / www.21cnjy.com )掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、B
【分析】
根据方差越小越稳定,比较后,选择即可.
【详解】
∵乙的方差最小,
∴乙最稳定,
故选B.
【点睛】
本题考查了方差的意义,正确理解方差越小越稳定是解题的关键.
7、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
8、A
【分析】
根据方差的性质解答.
【详解】
解:∵甲乙两人的方差分别是=1.2,=1.1,
∴乙比甲稳定,
故选:A.
【点睛】
此题考查了方差的性质:方差越小越稳定.
9、D
【分析】
根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.
【详解】
解:数字“20211202”中,共有4个“2”,
∴数字“2”出现的频数为4,
故选:D.
【点睛】
题目主要考查频数的定义,理解频数的定义是解题关键.
10、D
【分析】
抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.2·1·c·n·j·y
【详解】
A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;
B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;
C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;
D检查中卫市的空气质量,应采用抽样调查,故符合要求;
故选D.
【点睛】
本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.
二、填空题
1、480
【分析】
用频数96除以频率0.2,即可求出被调查的学生人数.
【详解】
解:96÷0.2=480(人),
被调查的学生人数为480人,
故答案为:480.
【点睛】
本题考查频数与频率,解题的关键是正确理解频数与频率的关系.
2、1班
【分析】
根据各个班身高在160cm和170cm之间同学的人数,进行判断即可.
【详解】
解:身高在160cm和170cm之间同学人数:1班26人,2班13人,3班18人,因此可挑选空间最大的是1班,
故答案为:1班.
【点睛】
此题考查频数分布表的表示方法,从表格中获取数据和数据之间的关系是正确判断的前提.
3、2
【分析】
找出出现次数最多的数是众数.
【详解】
解:数据1,2,4,5,2中,2出现的次数最多,是2次,因此众数是2.
故答案为:2.
【点睛】
本题考查众数的意义及求法,在一组数据中出现次数最多的数是众数.
4、540
【分析】
先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.
【详解】
解:根据题意得:
(人.
答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.
故答案为:540.
【点睛】
此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
5、3
10 150~160
【分析】
(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;
(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;
(3)根据所填信息确定身高在哪个范围的人数最多即可.
【详解】
(1)填表:
身高(cm) 140~150 150~160 160~170
频数 1 15 4
百分比 5% 75% 20%
(2)上表把身高分成3组,组距是10;
(3)身高在范围最多.
【点睛】
本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.
三、解答题
1、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.
【分析】
(1)求出50名学生收集废旧电池的总数,再求平均数即可;
(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;
(3)先求出这些电池可污染的水的数量即可解决问题.
【详解】
解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);
(2)从统计表格得,众数为4节;
由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);
(3)样本中电池总数4.8×50=240,
由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,
故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:
,,,,即,,,,
由于各种电池1节能污染水的 ( http: / / www.21cnjy.com )量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,
故在50名学生收集的废电池可少受污染水的吨数为
=320000(吨)
320000÷50×500=3200000吨,
答:本次活动可减少受浸染的水3200000吨.
【点睛】
本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.
2、(1)600;36%;(2)见解析;(3)乙当选
【分析】
(1)选票的总数=选择甲的人数÷甲的得票率,乙的得票率=1-甲的得票率-丙的得票率;
(2)求出丙的人数,补全图(2)的条形统计图;
(3)由题意可分别求得三人的得分,比较得出结论.
【详解】
解:(1)参加投票的人数,
乙的得票率.
故答案为:600;36%;
(2)丙的得票数,补全的条形统计图见下图所示:
( http: / / www.21cnjy.com / )
(3)将答辩、笔试和学生投票三项得分按4:2:2的比例确定每人的总成绩:
(分);
(分);
(分).
因为,所以乙当选.
【点睛】
本题考查条形统计图、扇形统计图,同时还要掌握加权平均数的计算方法,熟练掌握加权平均数的定义是解答本题的关键.21教育名师原创作品
3、(1)600;(2)150,12,补全条形统计图见解析;(3)
【分析】
(1)根据条形统计图和扇形统计图由B类别的人数和所占比即可求出总人数;
(2)用总人数乘以C类别的所占比即可得出C类别的人数,用总人数减去A、B、C、D的人数即可得出E类别人数,补全条形统计图即可;
(3)求出E类别的所占比,再乘以即可得出答案.
【详解】
(1)由题可知:参与本次调查活动的学生有(人),
故答案为:600;
(2)C类别的人数为(人),
E类别的人数为(人),
补全条形统计图如下:
( http: / / www.21cnjy.com / )
(3)超高度近视在扇形图中所对应的圆心角的度数为.
【点睛】
本题考查统计知识,根据条形统计图与扇形统计图所给出的条件求解是解题的关键.
4、(1)50,见解析;(2),见解析
【分析】
(1)由A类景区有15万人,占比30%,从而可得游客的总人数,再由总人数乘以B类的占比得到B类的人数,再补全图形即可;
(2)先画树状图得到选择的所有的等可能的结果数16种,同时得到选择同一景区的等可能的结果数有4种,再利用概率公式计算即可.
【详解】
解:(1)岳麓区旅游景点共接待游客15÷30%=50(万人),
B景点的人数为50×24%=12(万人),
补全条形图如下:
( http: / / www.21cnjy.com / )
(2)画树状图如图所示:
( http: / / www.21cnjy.com / )
∵共有16种等可能出现的结果,其中甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的结果有4种,
∴甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率=.
【点睛】
本题考查的是从条形图与扇 ( http: / / www.21cnjy.com )形图中获取信息,补全条形图,利用列表法或画树状图求简单随机事件的概率,熟练的掌握统计与概率中的基础知识是解题的关键.
5、(1)190
(2)捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数
【分析】
(1)把捐每种款项的人数相加即是预备年级共有的学生人数,列式解答即可得到答案;
(2)用捐款20元以上(不包括捐款20元的)的人数除以预备年级捐款总人数,列式解答即可得到答案.
(1)
(人)
本次活动中预备年级共有190个同学捐款;
故答案为:190;
(2)
,
答:捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数为
【点睛】
本题主要考查条形统计图,解答此题的关键是确定预备年级捐款总人数,然后再列式解答即可.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)