中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21*cnjy*com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
2、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
3、一组数据2,9,5,5,8,5,8的中位数是( )
A.2 B.5 C.8 D.9
4、数据1,2,3,4,5的方差是( )
A. B.2 C.3 D.5
5、甲、乙、丙、丁四名学生近4 ( http: / / www.21cnjy.com )次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
6、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
7、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.
星期 日 一 二 三 四 五 六
个数 11 12 10 13 13 13 12
对于小强做引体向上的个数,下列说法错误的是( )
A.平均数是12 B.众数是13
C.中位数是12.5 D.方差是
8、在某中学举行的“筑梦路上”演讲 ( http: / / www.21cnjy.com )比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )
A.平均数是89 B.众数是93
C.中位数是89 D.方差是2.8
9、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本www.21-cn-jy.com
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
10、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查
C.对华为某批次手机防水功能的调查 D.对某班学生肺活量情况的调查
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据7,2,1,3的极差为______.
2、已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是__________.
3、某校七年级二班在订购本班的班服前,按身 ( http: / / www.21cnjy.com )高型号进行登记,对女生的记录中,身高150cm以下记为S号,150~160cm记为M号,160~170cm记为L号.170cm以上记为XL号.若绘制成统计图描述这些数据,合适的统计图是_____(填“条形”、“折线”、“扇形”中的一个)统计图.
4、数据1,2,4,5,2的众数是 _____.
5、某校九年级进行了3次体育中考项目—1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是=0.01,=0.009,=0.0093.则甲、乙、丙三位同学中成绩最稳定的是________.【来源:21·世纪·教育·网】
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两校参加区举办的学生英 ( http: / / www.21cnjy.com )语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:
甲校成绩统计表
成绩 7分 8分 9分 10分
人数 11 0 x 8
( http: / / www.21cnjy.com / )
(1)甲校参赛人数是______人,______;
(2)请你将如图②所示的统计图补充完整;
(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?21教育名师原创作品
2、为提高学生的安全意识,学校就学生对校园安 ( http: / / www.21cnjy.com )全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解.并将结果绘制成两幅不完整的统计图.请你根据统计信息解答下列问题:
(1)接受问卷调查的学生共有 人;
(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;
(3)全校约有学生1500人,估计“A”等级的学生约有多少人?
(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率.
( http: / / www.21cnjy.com / )
3、为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.
载客量/人 组中值 频数(班次)
1≤x<21 11 2
21≤x<41 a 8
41≤x<61 b 20
(1)求出表格中a=_______,b=______.
(2)计算该2路公共汽车平均每班的载客量是多少
4、根据公安部交管局下发的通知,春节 ( http: / / www.21cnjy.com )前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:
年龄x(岁) 人数 男性占比
x<20 4 50%
20≤x<30 m 60%
30≤x<40 25 60%
40≤x<50 8 75%
x≥50 3 100%
(1)统计表中m的值为 ;
(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为 ;
(3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率.
5、某校七年级为了解学生课堂发言情况,随机抽 ( http: / / www.21cnjy.com )取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:21cnjy.com
( http: / / www.21cnjy.com / )
组别 发言次数n
A
B
C
D
E
F
(1)直接写出随机抽取学生的人数为______人;
(2)直接补全频数直方图;
(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;
(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数.
-参考答案-
一、单选题
1、B
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
2、C
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调 ( http: / / www.21cnjy.com )查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21教育网
3、B
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
4、B
【分析】
先计算平均数=3,代入计算即可.
【详解】
∵1,2,3,4,5,
∴=3,
∴
=2,
故选B.
【点睛】
本题考查了方差,熟练掌握方差的计算公式是解题的关键.
5、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查了方差,方差是反映 ( http: / / www.21cnjy.com )一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.【出处:21教育名师】
6、C
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的 ( http: / / www.21cnjy.com )区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、C
【分析】
根据平均数的定义:一组数据的总和除 ( http: / / www.21cnjy.com )以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.2·1·c·n·j·y
【详解】
解:由题意得它们的平均数为:
,故选项A不符合题意;
∵13出现的次数最多,
∴众数是13,故B选项不符合题意;
把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,
∴中位数为12,故C选项符合题意;
方差:,故D选项不符合题意;
故选C.
【点睛】
本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.
8、D
【分析】
根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.
【详解】
∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,
从小到大排列为88,89,90,90,93,
∴平均数为,众数为90,中位数为90,
故选项A、B、C错误;
方差为,
故选项D正确.
故选:D.
【点睛】
本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.
9、D
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.【来源:21cnj*y.co*m】
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重情 ( http: / / www.21cnjy.com )况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.【版权所有:21教育】
10、D
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;
B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;
C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;
D、对某班学生肺活量情况的调查,人数较少,适合普查;
故选:D.
【点睛】
本题考查了抽样调查和全面 ( http: / / www.21cnjy.com )调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21·世纪*教育网
二、填空题
1、6
【分析】
根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.
【详解】
解:一组数据7,2,1,3的极差为,
故答案为:.
【点睛】
本题考查了极差的定义,熟记定义是解本题的关键.
2、16.5,17
【分析】
根据众数和中位数的定义求解即可,中位数 ( http: / / www.21cnjy.com ):将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.
【详解】
将,,,,,,,从小到大排列为:,,,,,,,
其中出现的次数最多,则众数为,
中位数为:.
故答案为:;
【点睛】
本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.
3、条形
【分析】
条形统计图能很容易看出数量 ( http: / / www.21cnjy.com )的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【详解】
解:为了清晰显示四种型号衣服的具体数量,应选用条形统计图,
故答案为:条形.
【点睛】
此题主要考查统计图的选择,应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.
4、2
【分析】
找出出现次数最多的数是众数.
【详解】
解:数据1,2,4,5,2中,2出现的次数最多,是2次,因此众数是2.
故答案为:2.
【点睛】
本题考查众数的意义及求法,在一组数据中出现次数最多的数是众数.
5、乙
【分析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵s甲2=0.01,s乙2=0.009,s丙2=0.0093,
∴s乙2<s丙2<s甲2,
∴甲、乙、丙三位同学中成绩最稳定的是乙.
故答案为:乙.
【点睛】
本题考查了方差的意义.方差是用来衡 ( http: / / www.21cnjy.com )量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21世纪教育网版权所有
三、解答题
1、(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.
【分析】
(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;
(2)先求出乙校打8分的人数,然后补全统计图即可得;
(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.
【详解】
解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得:
总人数为:人,
∵两校参赛人数相等,
∴甲校参赛人数为20人,
∴人,
故答案为:20;1;
(2)乙校打8分的人数为:人,作图如下:
( http: / / www.21cnjy.com / )
(3)甲校得分平均数为:,
甲校得分中位数为排序后第10、11位的平均数:分;
乙校得分平均数为:,
甲校得分中位数为排序后第10、11位的平均数:分;
两校得分的平均分数一样,中位数分数乙校大于甲校,
∴两学校的分数从平均数角度分析,成绩一样好;
从中位数角度分析,乙校成绩好.
【点睛】
题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.
2、(1)40;(2)72°,见解析;(3)225人;(4)
【分析】
(1)C组:了解很少这个小组有人,占比由可得答案;
(2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;
(3)由乘以A组的占比即可得到答案;
(4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案.21*cnjy*com
【详解】
解:(1) C组:了解很少这个小组有人,占比
接受问卷调查的学生共有人,
故答案为: ;
(2)组占比:
扇形统计图中“D”等级的扇形的圆心角的度数为:
,
组人数为:
所以补全条形统计图如下:
( http: / / www.21cnjy.com / )
(3)全校约有学生1500人,估计“A”等级的学生约有:
(人);
(4)列表如下:
甲 乙 丙 丁
甲 (甲,乙) (甲,丙) (甲,丁)
乙 (乙,甲) (乙,丙) (乙,丁)
丙 (丙,甲) (丙,乙) (丙,丁)
丁 (丁,甲) (丁,乙) (丁,丙)
所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,
所以刚好抽到甲和丁同学的概率是:.
【点睛】
本题考查的是从条形图与扇形图中获取信息,扇 ( http: / / www.21cnjy.com )形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键.21·cn·jy·com
3、(1)31;51;(2)43人.
【分析】
(1)利用组中值的计算方程直接计算即可得;
(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解即可.
【详解】
解:(1),
,
故答案为:31;51;
(2)(人),
答:该2路公共汽车平均每班的载客量是43人.
【点睛】
题目主要考查组中值及加权平均数的计算方法,理解题意,掌握组中值及加权平均数的计算方法是解题关键.
4、
(1)10
(2)180°
(3)见解析,
【分析】
(1)根据总数减去表格中其他数据即可求解;
(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;
(3)用列表法求概率即可.
(1)
故答案为:10
(2)
故答案为:
(3)
设两名男性用表示,两名女性用表示,根据题意,列表如下,
由上表可知,共有12种等可能的结果,符合条件的结果有8种,
故P(恰好抽到1名男性和1名女性)=
【点睛】
本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键.www-2-1-cnjy-com
5、(1)50;(2)补全频数直方图见解析;(3)B部分所对应的百分比;F部分扇形圆心角的度数为;(4)180人.2-1-c-n-j-y
【分析】
(1)用A组频数除以频率,即可求得抽取人数为50人;
(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;
(3)用B组频数除以50,即可求解;用F组频数除以50再乘以360°即可求解;
(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解.
【详解】
(1)3÷6%=50,
故答案为:50;
(2)50×30%=15, 50-3-10-15-13-4=5,补全频数直方图如下;
( http: / / www.21cnjy.com / )
(3)B部分所对应的百分比,
F部分扇形圆心角的度数为;
(4)(人),
答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人.
【点睛】
本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)