【强化训练】沪教版(上海)九下 第二十八章统计初步综合训练试题(含详细解析)

文档属性

名称 【强化训练】沪教版(上海)九下 第二十八章统计初步综合训练试题(含详细解析)
格式 doc
文件大小 2.3MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-24 10:37:21

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙、丙、丁四名学生近4次数学测验成绩 ( http: / / www.21cnjy.com )的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是(  )2·1·c·n·j·y
A.甲 B.乙 C.丙 D.丁
2、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
3、为了了解2017年我县九年级6023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是(  )【来源:21cnj*y.co*m】
A.2017年我县九年级学生是总体 B.每一名九年级学生是个体
C.200名九年级学生是总体的一个样本 D.样本容量是200
4、甲、乙、丙、丁四名跳高运动员最近10 ( http: / / www.21cnjy.com )次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )
甲 乙 丙 丁
平均数/m 180 180 185 185
方差 8.2 3.9 75 3.9
A.甲 B.乙 C.丙 D.丁
5、为了解学生参加体育锻炼的情况、现将九 ( http: / / www.21cnjy.com )年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )
( http: / / www.21cnjy.com / )
A.九年级(1)班共有学生40名 B.锻炼时间为8小时的学生有10名
C.平均数是8.5小时 D.众数是8小时
6、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,,,则成绩波动最小的班级( )
A.甲 B.乙 C.丙 D.无法确定
7、下列调查中最适合采用全面调查的是( )
A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量
C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”
8、数字“20211202”中,数字“2”出现的频数是(  )
A.1 B.2 C.3 D.4
9、新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是(  )
日期 星期一 星期二 星期三 星期四 星期五 星期六 星期天
体温(℃) 36.3 36.7 36.2 36.3 36.2 36.4 36.3
A.36.3和36.2 B.36.2和36.3 C.36.3和36.3 D.36.2和36.1
10、某小组同学在一周内参加家务劳动的时间表所示,关于“劳动时间”的这组数据,以下说法正确的是( )2-1-c-n-j-y
劳动时间(小时) 3 3.5 4.5 4
人数 1 1 1 2
A.中位数是4.5,平均数是3.75 B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某次测试中,小颖语文,数 ( http: / / www.21cnjy.com )学两科分数共计176分,如果再加上英语分数,三科的平均分就比语文和数学的两科平均分多3分,则小颖的英语成绩是______分.21*cnjy*com
2、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为=38,=10,则______同学的数学成绩更稳定.
3、一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.
4、某单位要招聘1名英语翻译,小亮参加招聘考试的各门成绩如表所示:
项目 听 说 读 写
成绩(分) 70 90 85 85
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则小亮的平均成绩为_____.
5、某公司招聘员工,对应 ( http: / / www.21cnjy.com )聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分、80分、90分,如果将这三项成绩按照5:3:2计入总成绩,则他的总成绩为 _____分.21教育名师原创作品
三、解答题(5小题,每小题10分,共计50分)
1、小颖随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:
( http: / / www.21cnjy.com / )
(1)这次被调查的总人数是多少?
(2)试求表示A组的扇形圆心角的度数,并补全条形统计图;
(3)试求在租用公共自行车的市民中,骑车时间在30分钟及以下的人数所占的百分比
2、某校气象兴趣小组的同学们想预估一下 ( http: / / www.21cnjy.com )泰安市某区域明年9月份日平均气温状况.他们收集了该区域近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:
( http: / / www.21cnjy.com / )
(1)这60天的日平均气温的中位数为 ,众数为 ;
(2)求这60天的日平均气温的平均数;
(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估区域明年9月份日平均气温为“舒适温度”的天数.
3、戴头盔对保护骑电动车人 ( http: / / www.21cnjy.com )的安全尤为重要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:
( http: / / www.21cnjy.com / )
请根据图中信息,解答下列问题
(1)该调查的样本容量为 .
(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;
(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?
4、为了让青少年学生走向操场,走进自 ( http: / / www.21cnjy.com )然,走到阳光下,积极参加体育锻炼.我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.
(1)请根据图中信息,补齐下面的表格:
次数 1 2 3 4 5
小明的成绩(秒) 13.3 13.4 13.3 ______ 13.3
小亮的成绩(秒) 13.2 ______ 13.1 13.5 13.3
(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;
(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?
( http: / / www.21cnjy.com / )
5、某校开设了丰富多彩的实 ( http: / / www.21cnjy.com )践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
( http: / / www.21cnjy.com / )
(1)直接在图①中补全条形统计图;
(2)图②中其它类课程所对应扇形的圆心角是 度(直接填空);
(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?
-参考答案-
一、单选题
1、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查了方差,方差是 ( http: / / www.21cnjy.com )反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.21cnjy.com
2、C
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.21·cn·jy·com
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区 ( http: / / www.21cnjy.com )别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21*cnjy*com
3、D
【分析】
总体是指考查的对象的全体,个体是总 ( http: / / www.21cnjy.com )体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据总体、个体、样本、样本容量的定义,做出判断.
【详解】
解: 2017年我县九年级学生的数学成绩是总体,故A不符合题意;
每一名九年级学生的数学成绩是个体,故B不符合题意;
200名九年级学生的数学成绩是总体的一个样本,故C不符合题意;
样本容量是200,故D符合题意;
故选D
【点睛】
考查了总体、个体、样本、样本容量,解题要分清 ( http: / / www.21cnjy.com )具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、D
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵,
∴从丙和丁中选择一人参加比赛,
∵S丙2>S丁2,
∴选择丁参赛,
故选:D.
【点睛】
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
5、D
【分析】
根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.
【详解】
解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;
B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;
C. 平均数是小时,故原选项判断错误,不合题意;
D. 众数是8小时,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.
6、C
【分析】
根据方差的意义可作出判断.方差是用 ( http: / / www.21cnjy.com )来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【来源:21·世纪·教育·网】
【详解】
解:∵,,,
∴,
∴成绩波动最小的班级是:丙班.
故选:C.
【点睛】
此题主要考查了方差的意义,正确理解方差的意义是解题关键.
7、D
【分析】
根据抽样调查和全面调查的定义逐一判断即可.
【详解】
解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;
B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;
C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;
D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区 ( http: / / www.21cnjy.com )别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、D
【分析】
根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.
【详解】
解:数字“20211202”中,共有4个“2”,
∴数字“2”出现的频数为4,
故选:D.
【点睛】
题目主要考查频数的定义,理解频数的定义是解题关键.
9、C
【分析】
根据中位数、众数的意义求解即可.
【详解】
解:把已知数据按照由小到大的顺序重新排序后为36.2,36.2,36.3,36.3,36.3,36.4,36.7,
该名同学这一周体温出现次数最多的是36.3℃,共出现3次,因此众数是36.3,
将这七天的体温从小到大排列处在中间位置的一个数是36.3℃,因此中位数是36.3,
故选:C.
【点睛】
本题考查中位数、众数,理解中位数、众数的意义是解题的关键.
10、C
【分析】
根据平均数、众数和中位数的概念求解.
【详解】
解:平均数为:(3+3.5+4×2+4.5)÷5=3.8,
这组数据中4出现的次数最多,众数为4,
∵共有5个人,
∴第3个人的劳动时间为中位数,
∴中位数为4.
故选:C.
【点睛】
本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.
二、填空题
1、97
【分析】
先求出三科的平均分,根据平均数的含义求出三科的总分,减去语文,数学两科分数即可求解.
【详解】
解:(176÷2+3)×3-176
=(88+3)×3-176
=91×3-176
=273-176
=97(分).
答:小明的外语成绩是97分.
故答案为:97.
【点睛】
本题考查了平均数的含义,本题的难点是求出三科的平均分和三科的总分.
2、乙
【分析】
根据平均数相同时,方差越小越稳定可以解答本题.
【详解】
解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为,,

乙同学的数学成绩更稳定,
故答案为:乙.
【点睛】
本题考查方差,解题的关键是明确方差越小越稳定.
3、7
【分析】
根据平均数和方差的计算公式即可得.
【详解】
解:设数据的平均数为,
则的平均数为,
数据的方差是7,


即的方差是7,
故答案为:7.
【点睛】
本题考查了求方差,熟记公式是解题关键.
4、82
【分析】
根据加权平均数的计算公式进行计算即可.
【详解】
解:小亮的平均成绩为:
(70×3+90×3+85×2+85×2)÷(3+3+2+2)
=(210+270+170+170)÷10
=820÷10
=82(分).
故小亮的平均成绩为82分.
故答案为:82.
【点睛】
本题考查了加权平均数,理解加权平均数的计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.www-2-1-cnjy-com
5、77
【分析】
利用加权平均数的计算方法进行计算即可得出答案.
【详解】
解:他的总成绩为是=77(分),
故答案为:77.
【点睛】
此题考查了加权平均数的意义和计算方法,掌握计算方法是正确解答的关键.
三、解答题
1、(1)50;(2)108°,图见解析;(3)92%
【分析】
(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数;
(2)用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数,从而补全统计图;21·世纪*教育网
(3)用A、B、D组的人数除以总人数,即可得出骑车时间不超过30分钟的人数所占的百分比.
【详解】
解:(1)调查的总人数是:19÷38%=50(人);
(2)A组所占圆心角的度数是:360×=108°;
C组的人数有:50-15-19-4=12(人)
补图如下:
( http: / / www.21cnjy.com / )
(3)因为30分钟及以下的应该是A+B+C区域,所以骑车时间是30分钟及以下的人数所占的百分比:×100%=92%【版权所有:21教育】
【点睛】
本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
2、(1)20℃,19℃
(2)20.6℃
(3)18天
【分析】
(1)根据中位数和众数的概念求解即可;
(2)根据加权平均数的定义列式计算即可;
(3)用样本中气温在18℃~21℃的范围内的天数所占比例乘以今年9月份的天数即可.
(1)
解:∵共有60个数,
∴中位数是第30、31个数的平均数,
∴该组数据的中位数是(20+20)÷2=20℃;
众数为19℃;
故答案为:20℃,19℃;
(2)
解:这60天的日平均气温的平均数为
(3)
解:∵(天,
∴估计该区域明年9月份日平均气温为“舒适温度”的天数约为18天.
【点睛】
本题主要考查众数和中位数、加权平 ( http: / / www.21cnjy.com )均数、样本估计总体,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【出处:21教育名师】
3、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).
【分析】
(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;
(2)用(1)中求出的样本总人数减去“很少戴 ( http: / / www.21cnjy.com )头盔”、 “常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;
(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.
【详解】
(1)由扇形统计图和条形统计图可得,
“常常戴头盔”的人数为64人,所占的百分比为,
∴调查的样本总人数=,
∴样本容量为200,
故答案为:200;
(2)“有时戴头盔”的人数=(人),
补全条形统计图如下:
( http: / / www.21cnjy.com / )
“总是戴头盔”的人数所占圆心角=;
(3)(万人),
∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).
【点睛】
此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.
4、(1)13.2,13 ( http: / / www.21cnjy.com ).4;(2)小明:中位数13.3,众数13.3,小亮:中位数13.3;(3)小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.
【分析】
(1)从统计图中可得到每次百米训练的成绩,从而填入表格即可;
(2)根据中位数、众数的意义求出结果即可;
(3)计算两人的平均数、方差,再比较得出结论.
【详解】
解:(1)从统计图可知,小明第次的成绩为,小亮第次的成绩为,
故答案为:,;补全的表格如下:
次数 1 2 3 4 5
小明 13.3 13.4 13.3 13.2 13. 3
小亮 13.2 13.4 13.1 13.5 13.3
(2)小明次成绩的中位数是,众数为;
小亮次成绩的中位数是;
(3)小明
小亮
∴小明
小亮
∵小明小亮
∴小明小亮
∴小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.
【点睛】
本题考查折线统计图、加权平均数、中位数、众数以及方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.21世纪教育网版权所有
5、(1)见解析;(2)36;(3)450
【分析】
(1)结合两个统计图,根据体 ( http: / / www.21cnjy.com )育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;www.21-cn-jy.com
(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;
(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.
【详解】
(1)调查的总人数是80÷40%=200(人),
参加艺术社团的人数是200×20%=40(人),
参加其它社团的人数200 80 40 60=20(人),
∴补全条形统计图如下:
( http: / / www.21cnjy.com / )
(2)它类课程在扇形统计图中所占圆心角的度数是,
故答案为:36;
(3)(人),
∴估计该校喜欢文学类课程的学生450人.
【点睛】
此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)