中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )21·cn·jy·com
A.6 B.5 C.4 D.3
2、某中学就周一早上学生到校的方式问题,对八年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率是( )【来源:21·世纪·教育·网】
八年级学生人数 步行人数 骑车人数 乘公交车人数 其他方式人数
300 75 12 135 78
A.0.1 B.0.25 C.0.3 D.0.45
3、某校九年级(3)班团支部为了让同学们进一 ( http: / / www.21cnjy.com )步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )21*cnjy*com
( http: / / www.21cnjy.com / )
A.0.25 B.0.3 C.2 D.30
4、九年级(1)班学生在引体向上测试中 ( http: / / www.21cnjy.com ),第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是( )2-1-c-n-j-y
A.7,7 B.6,7 C.6.5,7 D.5,6
5、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( )【来源:21cnj*y.co*m】
A.乙同学的成绩更稳定 B.甲同学的成绩更稳定
C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定
6、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本【版权所有:21教育】
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
7、为了解某市参加中考75000名学生的体重情况,抽查其中2000名学生的体重进行统计分析,下列叙述正确的是( )
A.该调查是普查 B.2000名学生的体重是总体的一个样本
C.75000名学生是总体 D.每名学生是总体的一个个体
8、下列命题正确的是( )
A.数轴上的每一个点都表示一个有理数
B.甲、乙两人五次考试平均成绩相同,且,,则乙的成绩更稳定
C.三角形的一个外角大于任意一个内角
D.在平面直角坐标系中,点与点关于x轴对称
9、下列调查中,最适合采用抽样调查的是( )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
10、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小丽的笔试成绩为90分,面试成绩为95分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 _______分.
2、一组数据:6,4,10的权数分别是2,5,1,则这组数据的加权平均数是______.
3、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
测试项目 测试成绩
甲 乙
面试 90 95
综合知识测试 85 80
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
4、南京2021年11月1号的最高气温为22℃,最低气温为12℃,该日的气温极差为 __.
5、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、某校对学生“一周课外阅读时间” ( http: / / www.21cnjy.com )的情况进行随机抽样调查,调查结果如图所示:(图中条形图形代表的是:例如阅读时间1至2小时的人数为14人,并且在时间上含前一个边界值1,不含后一个边界值2,以此类推…)
( http: / / www.21cnjy.com / )
(1)随机抽样调查的总人数是多少?
(2)用扇形统计图表示随机抽样调查的情况;
(3)若该校有1500名学生,则根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数是多少?
2、在“迎新年,庆元旦”期间,某商场推出 ( http: / / www.21cnjy.com )A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
( http: / / www.21cnjy.com / )
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
3、某中学为了解八年学级生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
根据以上数据,得到如下不完整的频数分布表:
次数 1 2 3 4 5 6
人数 1 2 a 6 b 2
(1)表格中的a= ,b= ;
(2)在这次调查中,参加志愿者活动的次数的众数为 ,中位数为 ;
(3)若该校八年级共有700名学生,根据调查统计结果,估计该校八年级学生参加志愿者活动的次数大于4次的人数.21教育网
4、某校要求八年级同学在课外活动中,必须在 ( http: / / www.21cnjy.com )五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级2班参加球类活动人数统计表
项目 篮球 足球 乒乓球 排球 羽毛球
人数 a 6 5 7 6
根据图中提供的信息,解答下列问题:
(1)a= ,b= ;
(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;
(3)该班参加乒乓球活动的 ( http: / / www.21cnjy.com )5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
( http: / / www.21cnjy.com / )
5、戴头盔对保护骑电动车人的安全尤为重 ( http: / / www.21cnjy.com )要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
请根据图中信息,解答下列问题
(1)该调查的样本容量为 .
(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;
(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?
-参考答案-
一、单选题
1、B
【分析】
本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
【详解】
解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,
∴x=5×7 4 4 5 6 6 7=3,
∴这一组数从小到大排列为:3,4,4,5,6,6,7,
∴这组数据的中位数是:5.
故选:B.
【点睛】
本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.
2、B
【分析】
用步行到校学生的频数除以学生总数即可求解.
【详解】
解:75÷300=0.25,
故选B.
【点睛】
本题考查了频率的计算方法,熟练掌握频率=频数÷总数是解答本题的关键.
3、B
【分析】
先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.
【详解】
由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
选择“5G时代”的人数为:30人,
∴选择“5G时代”的频率是:=0.3;
故选:B.
【点睛】
本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.
4、C
【分析】
根据中位数和众数的概念可得答案,中位数是把数 ( http: / / www.21cnjy.com )据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.
【详解】
解:在这一组数据中7是出现次 ( http: / / www.21cnjy.com )数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.
故选:C.
【点睛】
本题考查了中位数和众数的概念 ( http: / / www.21cnjy.com ),注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5、A
【分析】
根据方差的定义逐项排查即可.
【详解】
解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样
∴乙同学的成绩更稳定.
故选A.
【点睛】
本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.www.21-cn-jy.com
6、D
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.2·1·c·n·j·y
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重 ( http: / / www.21cnjy.com )情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
7、B
【分析】
根据抽样调查、全面调查、总体 ( http: / / www.21cnjy.com )、个体、样本的相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本)进行分析.
【详解】
解:根据题意可得:
该调查为抽样调查,不是普查,A选项错误,不符合题意;
2000名学生的体重是总体的一个样本,B 选项正确,符合题意;
75000名学生的体重情况是总体,C选项错误,不符合题意;
每名学生的体重是总体的一个个体,D选项错误,不符合题意;
故选B.
【点睛】
本题考查了抽样调查、全面调查、总体、个体、样 ( http: / / www.21cnjy.com )本相关概念.解题关键是理解相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本).
8、D
【分析】
根据数轴上的点与实数一一对应即可判断A;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B;根据三角形的外角与内角的关系即可判断C;根据关于轴对称的点的坐标特征即可判断D
【详解】
A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;
B. 甲、乙两人五次考试平均成绩相同,且,,则甲的成绩更稳定,故该选项不正确,不符合题意;
C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;
D. 在平面直角坐标系中,点与点关于x轴对称,故该选项正确,符合题意;
故选D
【点睛】
本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于轴对称的点的坐标特征,掌握以上知识是解题的关键.21世纪教育网版权所有
9、A
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的区 ( http: / / www.21cnjy.com )别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21教育名师原创作品
10、D
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查 ( http: / / www.21cnjy.com )的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、92
【分析】
根据加权平均数的定义和计算公式计算可得.
【详解】
解:小丽的平均成绩是=92(分).
故答案为:92.
【点睛】
本题主要考查加权平均数,解题的关键是熟练掌握加权平均数的定义和计算公式.
2、5.25
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:6,4,10的权数分别是2,5,1,
∴这组数据的加权平均数是(6×2+4×5+10×1)÷(2+5+1)=5.25.
故答案为5.25.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
3、乙
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
4、10℃
【分析】
用最高温度减去最低温度即可.
【详解】
解:该日的气温极差为22﹣12=10(℃).
故答案为:10℃.
【点睛】
本题考查了有理数减法,解题的关键是了解有理数减法法则在生活中运用方法,难度不大.
5、1
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360o-(60o+30o+120o+135o)=15o,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
三、解答题
1、(1)100人;(2)见解析;(3)990人
【分析】
(1)由条形统计图的数据直接相加,即可得到答案;
(2)由题意,分别求出每个时间段的百分比,然后画出扇形统计图即可;
(3)用1500乘以超过3小时的百分比,即可得到答案;
【详解】
解:(1)随机抽样调查的总人数是:
14+20+35+25+6=100人;
(2)根据题意,则
1至2小时的百分比为:;
2至3小时的百分比为:;
3至4小时的百分比为:;
4至5小时的百分比为:;
5至6小时的百分比为:;
用扇形统计图表示随机抽样调查的情况;
( http: / / www.21cnjy.com / )
(3)该校学生“一周课外阅读时间”超过3小时的人数是:
1500×(6% + 25% + 35%)=990(人);
答:根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数大约是990人;
【点睛】
本题考查了条形统计图以及扇形统计图,解题的关键是从条形图上可以清楚地看出各部分数量,从而进行计算.
2、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
( http: / / www.21cnjy.com / )
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,21·世纪*教育网
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
3、(1)4,5;(2)4,4;(3)245人
【分析】
(1)根据所给数据分别求出次数为3和次数为5的人数即可;
(2)根据中位数和众数的定义求解即可;
(3)先求出样本中八年级学生参加志愿者活动的次数大于4次的人数占比,然后估计总体即可.
【详解】
解:(1)由所给数据可知:次数为3的人数有4人,即;次数为5的人数有5人,即,
故答案为:4,5;
(2)由表格可知次数为4的人数最多,即参加志愿者活动的次数的众数为4,
∵一共有20名学生参加调查,
∴中位数为次数排在第10位和第11位的两个数据的平均数,即,
故答案为:4,4;
(3)由表格可知,样本中一共有5+2=7名学生参加志愿者活动的次数大于4次,
∴估计该校八年级学生参加志愿者活动的次数大于4次的人数为人.
【点睛】
本题主要考查了中位数,众数,频数分布表,用样本估计总体,解题的关键在于能够熟知相关知识.
4、(1)16,17.5;(2)90;(3)
【分析】
(1)首先求得总人数,然后根据百分比的定义求解;
(2)利用总数乘以对应的百分比即可求解;
(3)利用列举法,根据概率公式即可求解.
【详解】
解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,
∴b=17.5,
故答案为:16,17.5;
(2)600×[6÷(5÷12.5%)]=90(人),
故答案为:90;
(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
∴则P(恰好选到一男一女)==.
( http: / / www.21cnjy.com / )
【点睛】
本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【出处:21教育名师】
5、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).21*cnjy*com
【分析】
(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;
(2)用(1)中求出的样 ( http: / / www.21cnjy.com )本总人数减去“很少戴头盔”、 “常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;
(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.
【详解】
(1)由扇形统计图和条形统计图可得,
“常常戴头盔”的人数为64人,所占的百分比为,
∴调查的样本总人数=,
∴样本容量为200,
故答案为:200;
(2)“有时戴头盔”的人数=(人),
补全条形统计图如下:
( http: / / www.21cnjy.com / )
“总是戴头盔”的人数所占圆心角=;
(3)(万人),
∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).
【点睛】
此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)