【最新强化训练】沪教版(上海)九下 第二十八章统计初步定向攻克试题(含详细解析)

文档属性

名称 【最新强化训练】沪教版(上海)九下 第二十八章统计初步定向攻克试题(含详细解析)
格式 doc
文件大小 1.7MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-24 10:40:01

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,调查方式选择合理的是 (   )
A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式
B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式
C.为了了解天门山景区的每天的游客客流量,选择全面调查方式
D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式
2、甲、乙、丙、丁四人进行射箭测试,每 ( http: / / www.21cnjy.com )人10次射箭成绩的平均数都是9.1环,四人的方差分别是S甲2=0.63,S乙2=2.56,S丙2=0.49,S丁2=0.46,则射箭成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
3、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是(  )
A.0.6 B.6 C.0.4 D.4
4、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( )
A.乙同学的成绩更稳定 B.甲同学的成绩更稳定
C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定
5、下列说法中正确的个数是(  )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
6、数据1,2,3,4,5的方差是( )
A. B.2 C.3 D.5
7、甲、乙、丙、丁四名跳 ( http: / / www.21cnjy.com )高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )21*cnjy*com
甲 乙 丙 丁
平均数/m 180 180 185 185
方差 8.2 3.9 75 3.9
A.甲 B.乙 C.丙 D.丁
8、读书能积累语言,丰富知 ( http: / / www.21cnjy.com )识,陶冶情操,提高文化底蕴.某中学八年级一班统计今年1~8月“书香校园”读书活动中全班同学的课外阅读数量(单位:本),并绘制了如图所示的折线统计图,下列说法正确的是( ).21教育名师原创作品
八年级一班学生1~8月课外阅读数量折线统计图
( http: / / www.21cnjy.com / )
A.课外阅读数量最少的月份是1月份
B.课外阅读数量比前一个月增加的月份共有4个月
C.平均每月课外阅读数量大于58本
D.阅读数量超过45本的月份共有4个月
9、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.乙比甲稳定 B.甲比乙稳定
C.甲和乙一样稳定 D.甲、乙稳定性没法对比
10、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,,,则成绩波动最小的班级( )
A.甲 B.乙 C.丙 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据:2021,2021,2021,2021,2021,2021的方差是______.
2、某单位拟招聘一个管理员,其 ( http: / / www.21cnjy.com )中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.
3、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
4、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
( http: / / www.21cnjy.com / )
5、一组数据:6,4,10的权数分别是2,5,1,则这组数据的加权平均数是______.
三、解答题(5小题,每小题10分,共计50分)
1、为积极响应“弘扬传统文化 ( http: / / www.21cnjy.com )”的号召,某校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如下图所示:
( http: / / www.21cnjy.com / )
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:
一周诗词诵背数量 3首 4首 5首 6首 7首 8首
人数 10 10 15 40 25 20
请根据调查的信息分析:
(1)补全频数分布直方图.
(2)活动启动之初学生“一周诗词诵背数量”的中位数为______首.
(3)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数.
(4)选择适当的统计量,从某一个角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
2、某校对学生“一周课外阅读时 ( http: / / www.21cnjy.com )间”的情况进行随机抽样调查,调查结果如图所示:(图中条形图形代表的是:例如阅读时间1至2小时的人数为14人,并且在时间上含前一个边界值1,不含后一个边界值2,以此类推…)21教育网
( http: / / www.21cnjy.com / )
(1)随机抽样调查的总人数是多少?
(2)用扇形统计图表示随机抽样调查的情况;
(3)若该校有1500名学生,则根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数是多少?21·cn·jy·com
3、今年月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.
(1)轻症患者的人数是多少?
(2)该市为治疗危重症患者共花费多少万元?
(3)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的、、、、五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中、两位患者的概率.
( http: / / www.21cnjy.com / )
4、某校想了解学生每周的课外阅读时间情况,随机抽取了部分学生进行调查,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:
( http: / / www.21cnjy.com / )
根据以上信息,解答下列问题:
(1)本次调查共随机抽取了_____________名学生,并补全频数分布直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数;
(3)在该校3000名学生中,每周的课外阅读时间不小于6小时的学生约有________________名.
5、为促进学生健康成长,帮助家长解决按时接 ( http: / / www.21cnjy.com )送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:2·1·c·n·j·y
( http: / / www.21cnjy.com / )
(1)求出本次调查中,随机抽取的学生人数;
(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;
(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?
-参考答案-
一、单选题
1、A
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.
【详解】
A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;
B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;
C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;
D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,选 ( http: / / www.21cnjy.com )择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、D
【分析】
根据方差的意义即可得.
【详解】
解:,且,
射箭成绩最稳定的是丁(方差越小,成绩越稳定),
故选:D.
【点睛】
本题考查了方差的意义,掌握理解方差的意义是解题关键.
3、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
4、A
【分析】
根据方差的定义逐项排查即可.
【详解】
解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样
∴乙同学的成绩更稳定.
故选A.
【点睛】
本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.www-2-1-cnjy-com
5、B
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
6、B
【分析】
先计算平均数=3,代入计算即可.
【详解】
∵1,2,3,4,5,
∴=3,

=2,
故选B.
【点睛】
本题考查了方差,熟练掌握方差的计算公式是解题的关键.
7、D
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵,
∴从丙和丁中选择一人参加比赛,
∵S丙2>S丁2,
∴选择丁参赛,
故选:D.
【点睛】
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
8、B
【分析】
根据折线统计图的信息依次进行判断即可.
【详解】
解:、课外阅读数量最少的月份是6月份,选项错误,不符合题意;
、课外阅读数量比前一个月增加的月份分别是2,5,7,8,共有4个月,选项正确,符合题意;
、每月阅读数量的平均数是小于58,选项错误,不符合题意;
、阅读数量超过45本的月份有2、3、5、7、8,共有5个月,选项错误,不符合题意;
故选:B.
【点睛】
本题考查了折线统计图,解题的关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况.www.21-cn-jy.com
9、A
【分析】
根据方差的性质解答.
【详解】
解:∵甲乙两人的方差分别是=1.2,=1.1,
∴乙比甲稳定,
故选:A.
【点睛】
此题考查了方差的性质:方差越小越稳定.
10、C
【分析】
根据方差的意义可作出判断. ( http: / / www.21cnjy.com )方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【来源:21·世纪·教育·网】
【详解】
解:∵,,,
∴,
∴成绩波动最小的班级是:丙班.
故选:C.
【点睛】
此题主要考查了方差的意义,正确理解方差的意义是解题关键.
二、填空题
1、0
【分析】
根据方差的定义求解.
【详解】
∵这一组数据都一样
∴平均数为2021
∴方差=
故答案为:0.
【点睛】
本题考查方差的计算.方差是用来衡量一组数据 ( http: / / www.21cnjy.com )波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2-1-c-n-j-y
2、88.8
【分析】
根据加权平均数的求解方法求解即可.
【详解】
解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),
故答案为:88.8.
【点睛】
本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.
3、46.8°
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.【来源:21cnj*y.co*m】
4、1
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360o-(60o+30o+120o+135o)=15o,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
5、5.25
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:6,4,10的权数分别是2,5,1,
∴这组数据的加权平均数是(6×2+4×5+10×1)÷(2+5+1)=5.25.
故答案为5.25.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
三、解答题
1、
(1)见解析
(2)4.5
(3)850
(4)见解析
【分析】
(1)根据5首的人数和圆心角的度数求出抽取的学生数量,再求出4首的人数即可;
(2)把数据从小到大排列,求中间两个数的平均数即可;
(3)求出大赛后一个月一周诗词诵背6首(含6首)以上的比例,乘以全校学生数即可;
(4)求出两次调查的平均数,比较大小即可.
(1)
解:由题意得抽查的这部分学生的数量为20÷=120(名),
大赛启动之初,一周诗词诵背数量为4首的人数为120×=45(名),补全统计图如图所示:
( http: / / www.21cnjy.com / )(2)
解:活动启动之初学生“一周诗词诵背数量” ( http: / / www.21cnjy.com )共抽样调查了120人,处在第60位和第61位的数据分别为4首和5首,中位数为(4+5)÷2=4.5(首),【出处:21教育名师】
故答案为:4.5.
(3)
解:大赛后一个月,一周诗词诵背6首(含6首)以上的的人数为(人),
答:估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数为850人.
(4)
解:活动启动之初的平均数为(首);
大赛后一个月的平均数为(首);
大赛后一个月学生 “一周诗词诵背 ( http: / / www.21cnjy.com )数量”的平均数高于活动启动之初学生 “一周诗词诵背数量”的平均数,该校经典诗词诵背系列活动的效果非常好,提高了学生背诵诗词的能力.
【点睛】
本题考查条形统计图、扇形统计图以及平均数和中位数的计算公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21*cnjy*com
2、(1)100人;(2)见解析;(3)990人
【分析】
(1)由条形统计图的数据直接相加,即可得到答案;
(2)由题意,分别求出每个时间段的百分比,然后画出扇形统计图即可;
(3)用1500乘以超过3小时的百分比,即可得到答案;
【详解】
解:(1)随机抽样调查的总人数是:
14+20+35+25+6=100人;
(2)根据题意,则
1至2小时的百分比为:;
2至3小时的百分比为:;
3至4小时的百分比为:;
4至5小时的百分比为:;
5至6小时的百分比为:;
用扇形统计图表示随机抽样调查的情况;
( http: / / www.21cnjy.com / )
(3)该校学生“一周课外阅读时间”超过3小时的人数是:
1500×(6% + 25% + 35%)=990(人);
答:根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数大约是990人;
【点睛】
本题考查了条形统计图以及扇形统计图,解题的关键是从条形图上可以清楚地看出各部分数量,从而进行计算.
3、(1)160人;(2)100万元;(3).
【分析】
(1)根据扇形统计图中轻症患者的人数所占的百分比乘以总人数即可求得;
(2)根据统计图中危重症患者的人数所占的百分比乘以总人数再乘以人均治疗费即可求得;
(3)根据列表求概率即可
【详解】
解:(1)轻症患者的人数(人;
(2)该市为治疗危重症患者共花费钱数(万元);
(3)列表得:
由列表格,可知:共有20种等可能的结果,恰好选中、患者概率的有2种情况,
(恰好选中、.
【点睛】
本题考查了扇形统计图和条形统计图信息关联,列表法求概率,从统计图中获取信息是解题的关键.
4、
(1)100,图见解析
(2),
(3)
【分析】
(1)组人数组所占百分比被调查总人数,将总人数组所占百分比组人数;
(2)组人数调查总人数,组对应的圆心角度数组占调查人数比例;
(3)将样本中课外阅读时间不小于6小时的百分比乘以3000可得.
(1)
解:(1)随机调查学生数为:(人,
课外阅读时间在小时之间的人数为:(人,
补全图形如下:
( http: / / www.21cnjy.com / )
故答案是:100;
(2)
解:,
组对应的圆心角为:;
(3)
解:(人.
估计该校3000名学生每周的课外阅读时间不小于6小时的人数约为870人,
故答案是:.
【点睛】
本题考查的是条形统计图和扇形统计图的综 ( http: / / www.21cnjy.com )合运用,解题的关键是读懂统计图,从不同的统计图中得到必要的信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21世纪教育网版权所有
5、(1)120人;(2)见解析,36°;(3)126人
【分析】
(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;
(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;21·世纪*教育网
(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.
【详解】
解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,
本次调查人数为:(人);
(2)∵艺术:(人),
∴补全的条形统计图如下图所示:
( http: / / www.21cnjy.com / )
“其他”所对应的圆心角度数为;
(3)样本中选择阅读的人数为18人,占样本的百分比为,
该校学生总人数为840人,估计选择阅读的学生有:(人),
∴选择“阅读”的学生大约有126人.
【点睛】
本题考查从条形图和扇形统计图获取信息和处理 ( http: / / www.21cnjy.com )信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.【版权所有:21教育】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)