中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个 ( http: / / www.21cnjy.com )题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明根据演讲比赛中9位评委所给的分数制作了如下表格:
平均数 中位数 众数 方差
8.0 8.2 8.3 0.2
如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是( )
A.平均数 B.中位数 C.众数 D.方差
2、某养羊场对200头生羊量进行统计,得到 ( http: / / www.21cnjy.com )频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com / )
A.180 B.140 C.120 D.110
3、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
4、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对渝北区初中学生对防护新冠肺炎知识的了解程度的调查
B.对“神州十三号”飞船零部件安全性的检查
C.对某品牌手机电池待机时间的调查
D.对中央电视台2021年春节联欢晚会满意度的调查
5、某电器商城统计了近五年销售的某种品牌的电冰箱销量,为了清楚地反应该品牌销量的增减变化情况,应选择使用的统计图是( )
A.条形统计图 B.扇形统计图
C.折线统计图 D.以上都可以
6、下列说法中,正确的是( )
A.若,,则
B.90′=1.5°
C.过六边形的每一个顶点有4条对角线
D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
7、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
8、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.乙比甲稳定 B.甲比乙稳定
C.甲和乙一样稳定 D.甲、乙稳定性没法对比
9、为了解某市参加中考75000名学生的体重情况,抽查其中2000名学生的体重进行统计分析,下列叙述正确的是( )
A.该调查是普查 B.2000名学生的体重是总体的一个样本
C.75000名学生是总体 D.每名学生是总体的一个个体
10、一组数据2,9,5,5,8,5,8的中位数是( )
A.2 B.5 C.8 D.9
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.
2、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:
活动项目 体育运动 学科兴趣小组 音乐 舞蹈 美术
人数(人) 15 12 10 5 8
(1)全班同学最感兴趣的课外活动项目是______;
(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.
3、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.www-2-1-cnjy-com
甲 乙 丙
44 44 42
1.7 1.5 1.7
4、学校“校园之声”广播 ( http: / / www.21cnjy.com )站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.【出处:21教育名师】
5、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:
( http: / / www.21cnjy.com / )
(1)根据以上信息,整理分析数据如表:
平均成绩(环) 众数(环) 中位数 方差
甲 7 a 7 c
乙 7 8 b 4.2
填空:a= ,b= ,c= ;
(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.
2、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.
( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
(1) ,类所在扇形的圆心角的度数是 ,并补全频数分布直方图;
(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;
(3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.
类别 分数段 频数(人数)
A
B 16
C 24
D 6
3、下表是云南某地气象站本周平均气温变化(当天与上一天的变化)的情况:(记当日气温上升为正).
星期 一 二 三 四 五 六 日
气温变化(℃) +3.5 +8.9 +2.6 ﹣7.6 +6.5 ﹣9.4 ﹣5.5
(1)上周星期日的平均气温为15℃,本周日与上周日相比,气温是升高了还是下降了?升或降了多少℃?
(2)以上周日平均气温作为0点,用折线统计图表示本周的气温变化情况.
( http: / / www.21cnjy.com / )
4、张老师将4个黑球和若干个白 ( http: / / www.21cnjy.com )球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.21*cnjy*com
摸球的次数n 100 150 200 500 700 1000
摸到黑球的次数m 24 29 60 126 177 251
摸到黑球的频率 0.24 0.193 0.30 0.252 0.253 a
(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)【来源:21·世纪·教育·网】
(2)估算袋中白球的个数.
5、近日,某学校开展党史学习教育进校园系列活动,组织七、八年级全体学生开展了“学党史、立志向、修品行、练本领”的网上知识竞赛活动,为了解竞赛情况,从两个年级各随机抽取了15名同学的成绩(满分为100分),收集数据为:21教育名师原创作品
七年级90,95,95,80,90,80,85,90,85,100,85,90,90,85,95;
八年级85,85,95,80,95,90,90,90,100,95,80,85,90,95,90.
(整理数据)
分数 80 85 90 95 100
七年级 2人 4人 5人 3人 1人
八年级 2人 3人 5人 a人 1人
(分析数据)
平均数 中位数 众数 方差
七年级 85 b 90 33
八年级 89.7 90 c 30
根据以上信息回答下列问题:
(1)请直接写出表格中a,b,c的值;
(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;
(3)该校七、八年级共有1200人,本次竞赛成绩不低于90分的为“优秀”,请估计这两个年级共有多少名学生达到“优秀”.www.21-cn-jy.com
-参考答案-
一、单选题
1、B
【分析】
根据中位数的定义解答即可.
【详解】
解:七个分数,去掉一个最高分和一个最低分,对中位数没有影响.
故选:B.
【点睛】
本题主要考查了统计量的选择,掌握中位数的定义是解答本题的关键.
2、B
【分析】
根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.
【详解】
解:由直方图可得,
质量在77.5kg及以上的生猪:90+30+20=140(头),
故选B.
【点睛】
本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.
3、D
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.2-1-c-n-j-y
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择 ( http: / / www.21cnjy.com )普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、B
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、对渝北区初中学生对防护新冠肺炎知识的了解程度的调查,适合采用抽样调查方式,故本选项不符合题意;
B、对“神州十三号”飞船零部件安全性的检查,适合采用全面调查(普查)方式,故本选项符合题意;
C、对某品牌手机电池待机时间的调查,适合采用抽样调查方式,故本选项不符合题意;
D、对中央电视台2021年春节联欢晚会满意度的调查,适合采用抽样调查方式,故本选项不符合题意;
故选:B
【点睛】
本题考查的是抽样调查和全面调查的区别, ( http: / / www.21cnjy.com )熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、C
【分析】
由扇形统计图表示的是部分在总体中所占的百 ( http: / / www.21cnjy.com )分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.
【详解】
解:∵为了清楚地反应该品牌销量的增减变化情况,
∴结合统计图各自的特点,应选择折线统计图.
故选:C.
【点睛】
本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.
6、B
【分析】
由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
【详解】
解:若,则故A不符合题意;
90′=故B符合题意;
过六边形的每一个顶点有3条对角线,故C不符合题意;
疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
故选:B.
【点睛】
本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.21*cnjy*com
7、B
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具 ( http: / / www.21cnjy.com )有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
8、A
【分析】
根据方差的性质解答.
【详解】
解:∵甲乙两人的方差分别是=1.2,=1.1,
∴乙比甲稳定,
故选:A.
【点睛】
此题考查了方差的性质:方差越小越稳定.
9、B
【分析】
根据抽样调查、全面调查、总体、个 ( http: / / www.21cnjy.com )体、样本的相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本)进行分析.2·1·c·n·j·y
【详解】
解:根据题意可得:
该调查为抽样调查,不是普查,A选项错误,不符合题意;
2000名学生的体重是总体的一个样本,B 选项正确,符合题意;
75000名学生的体重情况是总体,C选项错误,不符合题意;
每名学生的体重是总体的一个个体,D选项错误,不符合题意;
故选B.
【点睛】
本题考查了抽样调查、全面调 ( http: / / www.21cnjy.com )查、总体、个体、样本相关概念.解题关键是理解相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本).21·世纪*教育网
10、B
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
二、填空题
1、10 9
【分析】
先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;
【详解】
解:由题意可把数据按由小到大的顺序排列为6、8、10、10,
所以该组数据的中位数为9,众数为10;
故答案为10,9
【点睛】
本题主要考查众数和中位数,一组数据中出现次数 ( http: / / www.21cnjy.com )最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
2、体育运动 10
【分析】
(1)从统计表中直接通过比较即可得到.
(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.
【详解】
解:从统计表分析人数可得到结论.由表可得:
(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;
(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=.
故答案为:(1)体育运动;(2)10,
【点睛】
本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.
3、乙
【分析】
先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.
【详解】
解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,
又乙的方差比甲小,所以乙的产量比较稳定,
即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;
故答案为:乙.
【点睛】
本题考查了方差:一组数据中 ( http: / / www.21cnjy.com )各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.21世纪教育网版权所有
4、88
【分析】
利用加权平均数按照比例求得小莹的个人总分即可.
【详解】
解:根据题意得:
(分),
答:小聪的个人总分为88分;
故答案为:88.
【点睛】
本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.
5、1
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360o-(60o+30o+120o+135o)=15o,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
三、解答题
1、(1),,;(2)答案见解析.
【分析】
(1)分别根据平均数,方差,中位数的定义求解即可;
(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.
【详解】
解:(1)由频数直方图可得:甲的成绩如下:
其中环出现了4次,所以众数是环,
环
由折线统计图可得:按从小到大排序为:
所以中位数为:.
故答案为:,,;
(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.
【点睛】
本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.21cnjy.com
2、(1)2,,图见解析;(2)450人;(3).
【分析】
(1)先根据类的信息可求出调查的总人数,由此即可得出的值,再求出类所占百分比,然后乘以可得圆心角的度数,最后根据类的人数补全频数分布直方图即可;【版权所有:21教育】
(2)利用720乘以成绩在范围内的学生所占百分比即可得;
(3)先画出树状图,从而可得随机抽取2 ( http: / / www.21cnjy.com )人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.
【详解】
解:(1)调查的总人数为(人),
则,
类所在扇形的圆心角的度数是,
故答案为:2,,
补全频数分布直方图如图所示:
( http: / / www.21cnjy.com / )
(2)(人),
答:估计该校成绩在范围内的学生人数为450人;
(3)把类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:
( http: / / www.21cnjy.com / )
由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种,
则所求的概率为,
答:恰好只选中其中1名留守学生进行经验交流的概率为.
【点睛】
本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.
3、(1)本周日与上周日相比,气温下降了,降了1℃;(2)见解析
【分析】
(1)把表中数据相加,得负为下降,得正为上升;
(2)根据图表中的气温变化情况计算出这七天的气温,从而画出折线统计图即可.
【详解】
解:(1)3.5+8.9+2.6﹣7.6+6.5﹣9.4﹣5.5=﹣1,
答:本周日与上周日相比,气温下降了,降了1℃;
(2)星期一气温:15+3.5=18.5(℃);
星期二气温:18.5+8.9=27.4(℃);
星期三气温:27.4+2.6=30(℃);
星期四气温:30﹣7.6=22.4(℃);
星期五气温:22.4+6.5=28.9(℃);
星期六气温:28.9﹣9.4=19.5(℃);
星期日气温:19.5﹣5.5=14(℃).
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了有理数加减的实际应用,折线统计图,解题的关键在于能够熟练掌握有理数加减计算法则.
4、(1)0.251;0.25;(2)12个
【分析】
(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;
(2)用概率公式列出方程求解即可.
【详解】
解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
故答案为:0.251;0.25.
(2)设袋中白球为x个,
x=12,
经检验x=12是方程的解,
答:估计袋中有2个白球.
【点睛】
此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
5、(1)a=4,b=90,c=90 (2)八年级,平均值大,方差小;(3)760
【分析】
(1)由题意根据提供数据确定八年级95分的人数,利用众数、中位数分别确定其他未知数的值即可;
(2)根据题意直接利用平均数、众数及方差确定哪个年级的成绩好即可;
(3)根据题意用样本的平均数估计总体的平均数即可.
【详解】
解:(1)观察八年级95分的有4人,故a=4;
七年级的成绩从小到大排列为:80,80,85,85,85,85,90,90,90,90,90,95,95,95,100;
七年级的中位数为90,故b=90;
八年级中90分的最多,八年级的众数为90,故c=90,
∴a=4,b=90,c=90;
(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;21·cn·jy·com
(3)1200×=760(名),
∴估计这两个年级共有760名学生达到“优秀”.
【点睛】
本题考查中位数、众数、平均数、方差等统计基础知识,明确相关统计量表示的意义及相关计算方法是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)