沪教版(上海)九年级数学第二学期第二十八章统计初步专题训练试卷(精选含详解)

文档属性

名称 沪教版(上海)九年级数学第二学期第二十八章统计初步专题训练试卷(精选含详解)
格式 doc
文件大小 1.8MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-24 14:13:45

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相 ( http: / / www.21cnjy.com )应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【来源:21cnj*y.co*m】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中,正确的是( )
A.若,,则
B.90′=1.5°
C.过六边形的每一个顶点有4条对角线
D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
2、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )
A.6 B.5 C.4 D.3
3、一组数据2,9,5,5,8,5,8的中位数是( )
A.2 B.5 C.8 D.9
4、为了了解2017年我县九年级6023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是(  )
A.2017年我县九年级学生是总体 B.每一名九年级学生是个体
C.200名九年级学生是总体的一个样本 D.样本容量是200
5、某校九年级(3)班团支部为了让同学们进一 ( http: / / www.21cnjy.com )步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )
( http: / / www.21cnjy.com / )
A.0.25 B.0.3 C.2 D.30
6、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:
成绩(分) 36 40 43 46 48 50 54
人数(人) 2 5 6 7 8 7 5
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是48分
C.该班学生这次考试成绩的中位数是47分
D.该班学生这次考试成绩的平均数是46分
7、九年级(1)班学生在引体向上测试中 ( http: / / www.21cnjy.com ),第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是(  )2·1·c·n·j·y
A.7,7 B.6,7 C.6.5,7 D.5,6
8、下列调查中,适合用全面调查的方式收集数据的是( )
A.对某市中小学生每天完成作业时间的调查
B.对全国中学生节水意识的调查
C.对某班全体学生新冠疫苗接种情况的调查
D.对某批次灯泡使用寿命的调查
9、在一次科技作品制作比赛中,某小组八件 ( http: / / www.21cnjy.com )作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )【来源:21·世纪·教育·网】
A.平均数是8 B.众数是8.5 C.中位数8.5 D.极差是5
10、下列调查中,适合用普查方式的是(  )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:=84, =83.2,=13.2, =26.36,由此学校决定让甲去参加比赛,理由是_______.
2、某单位要招聘1名英语翻译,小亮参加招聘考试的各门成绩如表所示:
项目 听 说 读 写
成绩(分) 70 90 85 85
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则小亮的平均成绩为_____.
3、若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则_______叫做这n个数的加权平均数.
4、为了了解学生对《未成 ( http: / / www.21cnjy.com )年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.21·世纪*教育网
( http: / / www.21cnjy.com / )
5、某学习小组的6名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、80分、74分,则众数是 _____分.www-2-1-cnjy-com
三、解答题(5小题,每小题10分,共计50分)
1、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:
试验次数 40 80 120 160 200 240 280 320 360 400
出现方块的次数 11 18 a 40 49 63 68 80 91 100
出现方块的频率 0.275 0.225 0.250 0.250 0.245 0.263 0.243 b 0.253 0.250
(1)将数据表a、b补充完整;
(2)从上表中可以估计出现方块的概率是________;
(3)从这副扑克牌中取出两组牌 ( http: / / www.21cnjy.com ),分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗.若不是,有利于谁.请你用概率知识(列表或画树状图)加以分析说明.21世纪教育网版权所有
2、某校想了解学生每周的课外阅读时间情况,随机抽取了部分学生进行调查,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:
( http: / / www.21cnjy.com / )
根据以上信息,解答下列问题:
(1)本次调查共随机抽取了_____________名学生,并补全频数分布直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数;
(3)在该校3000名学生中,每周的课外阅读时间不小于6小时的学生约有________________名.
3、会宁县教育局为了了解初三男生引体向上的成绩情况,随机抽测了本区部分学校初三男生,并将测试成绩绘成了如下两幅不完整的统计图.2-1-c-n-j-y
( http: / / www.21cnjy.com / )
请你根据图中的信息,解答下列问题:
(1)写出扇形图中 ,并补全条形图;
(2)在这次抽测中,测试成绩的众数和中位数分别是 个, 个;
(3)该区初三年级共有男生1800人,如果引体向上达6个以上(含6个)得满分,请你估计该区男生的引体向上成绩能获得满分的有多少名?21·cn·jy·com
4、随着信息技术的迅猛发展, ( http: / / www.21cnjy.com )人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题: 21*cnjy*com
( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
(1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______;21*cnjy*com
(2)请将条形统计图补充完整;
(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?
(4)根据上图, 你可以获得什么信息?
5、随着经济的发展,我们身边的环境受 ( http: / / www.21cnjy.com )到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:
废旧电池数/节 3 4 5 6 8
人数/人 10 15 12 7 6
(1)这50名学生平均每人收集废旧电池多少节?
(2)这组废旧电池节数的中位数,众数分别是多少?
(3)根据统计发现,本次收集的各种废旧 ( http: / / www.21cnjy.com )电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?
-参考答案-
一、单选题
1、B
【分析】
由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
【详解】
解:若,则故A不符合题意;
90′=故B符合题意;
过六边形的每一个顶点有3条对角线,故C不符合题意;
疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
故选:B.
【点睛】
本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
2、B
【分析】
本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
【详解】
解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,
∴x=5×7 4 4 5 6 6 7=3,
∴这一组数从小到大排列为:3,4,4,5,6,6,7,
∴这组数据的中位数是:5.
故选:B.
【点睛】
本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.
3、B
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
4、D
【分析】
总体是指考查的对象的全体, ( http: / / www.21cnjy.com )个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据总体、个体、样本、样本容量的定义,做出判断.
【详解】
解: 2017年我县九年级学生的数学成绩是总体,故A不符合题意;
每一名九年级学生的数学成绩是个体,故B不符合题意;
200名九年级学生的数学成绩是总体的一个样本,故C不符合题意;
样本容量是200,故D符合题意;
故选D
【点睛】
考查了总体、个体、样本、样本容量,解题要分清 ( http: / / www.21cnjy.com )具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
5、B
【分析】
先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.
【详解】
由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
选择“5G时代”的人数为:30人,
∴选择“5G时代”的频率是:=0.3;
故选:B.
【点睛】
本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.
6、D
【分析】
由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.
【详解】
解:该班一共有:2+5+6+7+8+7+5=40(人),
得48分的人数最多,众数是48分,
第20和21名同学的成绩的平均值为中位数,中位数为(分),
平均数是(分),
故A、B、C正确,D错误,
故选:D.
【点睛】
本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.
7、C
【分析】
根据中位数和众数的概念可得答案 ( http: / / www.21cnjy.com ),中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.
【详解】
解:在这一组数据中7是出 ( http: / / www.21cnjy.com )现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.
故选:C.
【点睛】
本题考查了中位数和众数的概念,注意找中位数 ( http: / / www.21cnjy.com )的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
8、C
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【版权所有:21教育】
【详解】
解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;
B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;
C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;
D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是抽样调查和全面调查的 ( http: / / www.21cnjy.com )区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【出处:21教育名师】
9、C
【分析】
计算这组数据的平均数、众数、中位数及极差即可作出判断.
【详解】
这组数据的平均数为:,众数为9,中位数为8.5,极差为10-7=3,故正确的是中位数为8.5.
故选:C
【点睛】
本题考查了反映一组数据平均数、众数、中位数、极差等知识,正确计算这些统计量是关键.
10、D
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择 ( http: / / www.21cnjy.com )普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、甲的平均成绩高,且甲的成绩较为稳定
【分析】
因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.
【详解】
∵=84, =83.2,=13.2, =26.36,
∴ ,,
∴甲的平均成绩高,且甲的成绩较为稳定;
故答案为:甲的平均成绩高,且甲的成绩较为稳定.
【点睛】
本题考查方差的意义.方差是用来衡量一组 ( http: / / www.21cnjy.com )数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、82
【分析】
根据加权平均数的计算公式进行计算即可.
【详解】
解:小亮的平均成绩为:
(70×3+90×3+85×2+85×2)÷(3+3+2+2)
=(210+270+170+170)÷10
=820÷10
=82(分).
故小亮的平均成绩为82分.
故答案为:82.
【点睛】
本题考查了加权平均数,理解加权平均数的计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.21教育网
3、
【分析】
根据加权平均数的计算方法求解即可得.
【详解】
解:根据题意可得:
加权平均数为:,
故答案为:.
【点睛】
题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.
4、540
【分析】
先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.
【详解】
解:根据题意得:
(人.
答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.
故答案为:540.
【点睛】
此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21cnjy.com
5、94
【分析】
根据众数的定义直接解答即可.
【详解】
解:∵94分出现了2次,出现的次数最多,
∴众数是94分.
故答案为:94.
【点睛】
本题考查了众数的定义.众数是一组数据中出现次数最多的数据,注意:众数可以不止一个.
三、解答题
1、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析
【详解】
(1)根据频数=总数×频率,频率=频数÷总数计算,补全即可;
(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;
(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论.www.21-cn-jy.com
【分析】
解:(1)由题意得:,,
填表如下所示:
试验次数 40 80 120 160 200 240 280 320 360 400
出现方块的次数 11 18 a 40 49 63 68 80 91 100
出现方块的频率 0.275 0.225 0.250 0.250 0.245 0.263 0.243 b 0.253 0.250
(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;
(3)列表如下:
红桃
1 2 3
方块 1 2 3 4
2 3 4 5
3 4 5 6
由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,
甲方赢,乙方赢,
∴乙方赢甲方赢,
∴这个游戏对双方是不公平的,有利于乙方.
【点睛】
本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解.
2、
(1)100,图见解析
(2),
(3)
【分析】
(1)组人数组所占百分比被调查总人数,将总人数组所占百分比组人数;
(2)组人数调查总人数,组对应的圆心角度数组占调查人数比例;
(3)将样本中课外阅读时间不小于6小时的百分比乘以3000可得.
(1)
解:(1)随机调查学生数为:(人,
课外阅读时间在小时之间的人数为:(人,
补全图形如下:
( http: / / www.21cnjy.com / )
故答案是:100;
(2)
解:,
组对应的圆心角为:;
(3)
解:(人.
估计该校3000名学生每周的课外阅读时间不小于6小时的人数约为870人,
故答案是:.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用 ( http: / / www.21cnjy.com ),解题的关键是读懂统计图,从不同的统计图中得到必要的信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21教育名师原创作品
3、(1)50;补全条形统计图见解析;(2)5,5(3)810名
【分析】
(1)根据引体向上达3个的人数占10%即可求得总人数,进而根据总人数减去其他的即可求得引体向上达6个的人数,进而即可求得的值,并补全统计图;
(2)根据(1)中的条形统计图直接可得众数;根据总人数为人,进而求得中位数为第100个与第101个的平均数,根据条形统计图即可判断中在体向上5个这一组,即可得中位数;
(3)根据题意用1800乘以45%即可求得该区男生的引体向上成绩能获得满分的人数.
【详解】
(1)
总人数为:(人)
引体向上达6个的人数为:(人)
补全图形如图:
( http: / / www.21cnjy.com / )
故答案为:
(2)根据条形统计图可知,引体向上达5个的人数最多,有60人;则众数为5,
根据总人数为人,进而求得中位数为第100个与第101个的平均数,根据条形统计图即可判断中在体向上5个这一组,则中位数为5
在这次抽测中,测试成绩的众数和中位数分别是5,5
故答案为:5,5
(3)(人)
该区男生的引体向上成绩能获得满分的有810人
【点睛】
本题考查了样本估计总体,条形统计图与扇形统计图信息关联,求某项所占百分比,求众数与中位数,从统计图中获取信息是解题的关键.
4、(1)200;;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一
【分析】
(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;
(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;
(4)信息合理即可.
【详解】
(1)本次调查的人数为:(45+50+15)÷(1 15% 30%)=200,
表示“支付宝”支付的扇形圆心角的度数为:360°×=81°,
故答案为:200,81°;
(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,
补充完整的条形统计图如图所示:
( http: / / www.21cnjy.com / )
(3).
答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.
(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
5、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.
【分析】
(1)求出50名学生收集废旧电池的总数,再求平均数即可;
(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;
(3)先求出这些电池可污染的水的数量即可解决问题.
【详解】
解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);
(2)从统计表格得,众数为4节;
由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);
(3)样本中电池总数4.8×50=240,
由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,
故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:
,,,,即,,,,
由于各种电池1节能污染水的 ( http: / / www.21cnjy.com )量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,
故在50名学生收集的废电池可少受污染水的吨数为
=320000(吨)
320000÷50×500=3200000吨,
答:本次活动可减少受浸染的水3200000吨.
【点睛】
本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)