中小学教育资源及组卷应用平台
九年级数学第二学期第二十八章统计初步专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域 ( http: / / www.21cnjy.com )内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。2·1·c·n·j·y
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是( )21*cnjy*com
日期 星期一 星期二 星期三 星期四 星期五 星期六 星期天
体温(℃) 36.3 36.7 36.2 36.3 36.2 36.4 36.3
A.36.3和36.2 B.36.2和36.3 C.36.3和36.3 D.36.2和36.1
2、下列调查中最适合采用全面调查的是( )
A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量
C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”
3、某校九年级(3)班团支部为了 ( http: / / www.21cnjy.com )让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )21教育名师原创作品
( http: / / www.21cnjy.com / )
A.0.25 B.0.3 C.2 D.30
4、如图,有100名学生参加两次科技知 ( http: / / www.21cnjy.com )识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易( )
( http: / / www.21cnjy.com / )
A.一,二 B.二,一 C.一,一 D.二,二
5、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )
A.3和2 B.4和3 C.5和2 D.6 和2
6、为了解某市参加中考75000名学生的体重情况,抽查其中2000名学生的体重进行统计分析,下列叙述正确的是( )
A.该调查是普查 B.2000名学生的体重是总体的一个样本
C.75000名学生是总体 D.每名学生是总体的一个个体
7、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )
( http: / / www.21cnjy.com / )
A.得分在70~80分的人数最多 B.组距为10
C.人数最少的得分段的频数为2 D.得分及格(≥60)的有12人
8、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:21世纪教育网版权所有
甲 乙 丙
平均数/分 96 95 97
方差 0.4 2 2
丁同学五轮预选赛的成绩依次为:97分、9 ( http: / / www.21cnjy.com )6分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )
A.甲 B.乙 C.丙 D.丁
9、下列说法正确的是( )
A.调查“行云二号”各零部件的质量适宜采用抽样调查方式
B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83
C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖
D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定
10、数字“20211202”中,数字“2”出现的频数是( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某招聘考试分笔试和面试两项,笔试成 ( http: / / www.21cnjy.com )绩和面试成绩按3:2计算平均成绩.若小明笔试成绩为85分,面试成绩为90分,则他的平均成绩是______分.
2、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
3、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
测试项目 测试成绩
甲 乙
面试 90 95
综合知识测试 85 80
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
4、已知一组按大小排列的整数数据1,2,2,x,3,4,5,7的众数是2,则这组数据的平均数是_______.
5、2021年徐州某一周各日的空气污染指数为127,98,78,85,95,191,70,这组数据的中位数是______.
三、解答题(5小题,每小题10分,共计50分)
1、某校开展了以“不忘初心,奋斗新时代” ( http: / / www.21cnjy.com )为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:
( http: / / www.21cnjy.com / )
(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;
(2)求本次所抽取学生九月份“读书量”的平均数.
2、甲、乙、丙三名候选人要 ( http: / / www.21cnjy.com )参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.
答辩、笔试成绩统计表
人员 甲 乙 丙
答辩成绩(分) 95 88 86
笔试成绩(分) 80 86 90
( http: / / www.21cnjy.com / )
根据以上信息,请解答下列问题.
(1)参加投票的共有________人,乙的得票率是________.
(2)补全条形统计图.
(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.
3、在“迎新年,庆元旦”期间,某商 ( http: / / www.21cnjy.com )场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
( http: / / www.21cnjy.com / )
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
4、实行垃圾分类是保护生态环境的有效 ( http: / / www.21cnjy.com )措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从A、B两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:
A小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5
B小区20位居民测试成绩的条形统计图如下:
( http: / / www.21cnjy.com / )
A、B小区抽取的居民测试成绩统计表如下:
小区 A B
平均数 7.3 a
中位数 7.5 b
众数 c 9
方差 2.41 3.51
根据以上信息,回答下列问题:
(1)填空:a= ,b= ,c= ;
(2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议.
5、甲、乙两人在5次打靶测试中命中的环数如下:
平均数 众数 中位数 方差
甲 8 8 0.4
乙 9 3.2
甲:8,8,7,8,9;乙:5,9,7,10,9.
(1)填写表格;
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
-参考答案-
一、单选题
1、C
【分析】
根据中位数、众数的意义求解即可.
【详解】
解:把已知数据按照由小到大的顺序重新排序后为36.2,36.2,36.3,36.3,36.3,36.4,36.7,
该名同学这一周体温出现次数最多的是36.3℃,共出现3次,因此众数是36.3,
将这七天的体温从小到大排列处在中间位置的一个数是36.3℃,因此中位数是36.3,
故选:C.
【点睛】
本题考查中位数、众数,理解中位数、众数的意义是解题的关键.
2、D
【分析】
根据抽样调查和全面调查的定义逐一判断即可.
【详解】
解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;
B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;
C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;
D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普 ( http: / / www.21cnjy.com )查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.www.21-cn-jy.com
3、B
【分析】
先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.
【详解】
由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
选择“5G时代”的人数为:30人,
∴选择“5G时代”的频率是:=0.3;
故选:B.
【点睛】
本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.
4、A
【分析】
根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
【详解】
解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
故选A.
【点睛】
条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.
5、D
【分析】
先根据平均数定义求出x,再根据方差公式计算即可求解.
【详解】
解:由题意得,
解得x=6,
∴这组数据的方差是.
故选:D
【点睛】
本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.
6、B
【分析】
根据抽样调查、全面调查、总体、个体、 ( http: / / www.21cnjy.com )样本的相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本)进行分析.21教育网
【详解】
解:根据题意可得:
该调查为抽样调查,不是普查,A选项错误,不符合题意;
2000名学生的体重是总体的一个样本,B 选项正确,符合题意;
75000名学生的体重情况是总体,C选项错误,不符合题意;
每名学生的体重是总体的一个个体,D选项错误,不符合题意;
故选B.
【点睛】
本题考查了抽样调查、全面调查、总体、个体 ( http: / / www.21cnjy.com )、样本相关概念.解题关键是理解相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本).21cnjy.com
7、D
【分析】
根据统计图中各分数的人数最大判断A正确,由横轴的数据差判断B正确,由各分数的人数最少判断C正确,由及格的人数相加判断D错误.21*cnjy*com
【详解】
解:A. 得分在70~80分的人数最多,故该项不符合题意;
B. 组距为10,故该项不符合题意;
C. 人数最少的得分段的频数为2,故该项不符合题意;
D. 得分及格(≥60)的有12+14+8+2=36人,故该项符合题意;
故选:D.
【点睛】
此题考查了条形统计图,正确理解横轴及纵轴的意义,掌握各分数的对应人数是解题的关键.
8、D
【分析】
首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.
【详解】
解:根据题意,
丁同学的平均分为:,
方差为:;
∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,
∴应该选择丁同学去参赛;
故选:D.
【点睛】
本题考查了平均数和方差,方差是用来衡量一 ( http: / / www.21cnjy.com )组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【出处:21教育名师】
9、B
【分析】
分别对各个选项进行判断,即可得出结论.
【详解】
解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;
B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;【版权所有:21教育】
C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;
D、某校举办了一次生活大百科知识竞赛, ( http: / / www.21cnjy.com )若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;
故选:B.
【点睛】
本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.
10、D
【分析】
根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.
【详解】
解:数字“20211202”中,共有4个“2”,
∴数字“2”出现的频数为4,
故选:D.
【点睛】
题目主要考查频数的定义,理解频数的定义是解题关键.
二、填空题
1、87
【分析】
按照加权平均数的计算公式计算即可.
【详解】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
解:小明的平均成绩是:=87(分).
故答案为:87.
【点睛】
本题考查了加权平均数的应用,掌握加权平均数的意义及计算是关键.
2、46.8°
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
3、乙
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
4、3.25
【分析】
根据题意得 ,然后用所有数的和除以8,即可求解.
【详解】
解:∵一组按大小排列的整数数据1,2,2,x,3,4,5,7的众数是2,
∴ ,
∴这组数据的平均数是 .
故答案为:3.25
【点睛】
本题主要考查了求平均数,众数,根据题意得到是解题的关键.
5、95
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将这组数据从小到大排列得:70,78,85,95,98,127,191,
中间位置的数为:95,所以中位数为95.
故答案为:95.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
三、解答题
1、(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.
【分析】
(1)从条形统计图中直接可得众数;将各组人数相加得出抽取学生总数,然后排序后找出最中间的“读书量”即可得出中位数;21·cn·jy·com
(2)先计算出学生“读书量”的总数,由(2)得抽取的学生总数为60人,由此即可计算出平均数.
【详解】
解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,
∴众数为:3;
抽取的学生总数为:人,
第30、31人“读书量”均为3本,
∴中位数为:3;
故答案为:3;3;
(2)学生“读书量”的总数为:
(本),
抽取的学生总数由(1)可得:60人,
平均数为:(本),
∴本次所抽取学生九月份“读书量”的平均数为3本.
【点睛】
题目主要考查从条形统计图获取信息,中位数、众数及平均数的求法,熟练掌握中位数、众数及平均数的求法是解题关键.【来源:21·世纪·教育·网】
2、(1)600;36%;(2)见解析;(3)乙当选
【分析】
(1)选票的总数=选择甲的人数÷甲的得票率,乙的得票率=1-甲的得票率-丙的得票率;
(2)求出丙的人数,补全图(2)的条形统计图;
(3)由题意可分别求得三人的得分,比较得出结论.
【详解】
解:(1)参加投票的人数,
乙的得票率.
故答案为:600;36%;
(2)丙的得票数,补全的条形统计图见下图所示:
( http: / / www.21cnjy.com / )
(3)将答辩、笔试和学生投票三项得分按4:2:2的比例确定每人的总成绩:
(分);
(分);
(分).
因为,所以乙当选.
【点睛】
本题考查条形统计图、扇形统计图,同时还要掌握加权平均数的计算方法,熟练掌握加权平均数的定义是解答本题的关键.www-2-1-cnjy-com
3、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
( http: / / www.21cnjy.com / )
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,2-1-c-n-j-y
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
4、(1)7.3、7.5、8;(2)A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【来源:21cnj*y.co*m】
【分析】
(1)根据平均数、众数和中位数的定义求解即可;
(2)根据平均数、中位数、方差的意义求解即可.
【详解】
解:(1)A小区20位居民的测试成绩中8分出现次数最多,有5次,
∴A小区的众数c=8,
有统计图数据可知B小区20位居民的测试成绩的平均数a==7.3,
∵B小区一共有20位居民参加测试,
∴B小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,21·世纪*教育网
∴B小区20位居民的测试成绩的中位数b==7.5,
故答案为:7.3、7.5、8;
(2)比较A、B小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A小区测试成绩的方差小于B小区,
∴A小区测试成绩波动幅度小;
建议:加强对B小区保护生态环境意识(答案不唯一).
【点睛】
本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键.
5、(1)见解析;(2)见解析
【分析】
(1)根据众数、平均数和中位数的定义求解:
(2)方差就是和中心偏离的程度,用来衡量 ( http: / / www.21cnjy.com )一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】
解:(1)∵8出现了3次,出现的次数最多,
∴甲的众数为8,
乙的平均数=(5+9+7+10+9)=8,
把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.
故填表如下:
平均数 众数 中位数 方差
甲 8 8 8 0.4
乙 8 9 9 3.2
故答案为:8,8,9;
(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.
【点睛】
本题考查了平均数,中位数,众数和方 ( http: / / www.21cnjy.com )差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)