【必考点解析】冀教版九下 第二十九章直线与圆的位置关系专项测试试题(含详解)

文档属性

名称 【必考点解析】冀教版九下 第二十九章直线与圆的位置关系专项测试试题(含详解)
格式 doc
文件大小 2.2MB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-08-24 16:23:01

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级数学下册第二十九章直线与圆的位置关系专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定 ( http: / / www.21cnjy.com )区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21·cn·jy·com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π21*cnjy*com
2、的边经过圆心,与圆相切于点,若,则的大小等于( )
( http: / / www.21cnjy.com / )
A. B. C. D.
3、如图,已知AB是的直径,C是AB延长线上一点,CE是的切线,切点为D,过点A作于点E,交于点F,连接OD、AD、BF.则下列结论不一定正确的是( )
( http: / / www.21cnjy.com / )
A. B.AD平分 C. D.
4、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为(  )
( http: / / www.21cnjy.com / )
A.15° B.20° C.25° D.30°
5、下列四个命题中,真命题是( )
A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点
C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧
6、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )
( http: / / www.21cnjy.com / )
A.18° B.28° C.36° D.45°
7、如图,FA、FB分别 ( http: / / www.21cnjy.com )与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )
( http: / / www.21cnjy.com / )
A. B.2 C.2 D.3
8、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交
9、已知正三角形外接圆半径为,这个正三角形的边长是( )
A. B. C. D.
10、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )21cnjy.com
( http: / / www.21cnjy.com / )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两直角边分别为6、8,那么的内接圆的半径为____________.
2、已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为__________.
3、如图,点O和点I分别是△ABC的外心和内心,若∠BOC=130°,则∠BIC=______.
( http: / / www.21cnjy.com / )
4、如图,PB与⊙O相切于点B,OP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.
( http: / / www.21cnjy.com / )
5、如图,A是⊙O上的一点,且AB是⊙O的切线,CD是⊙O的直径,连接AC、AD.若∠BAC=30°,CD=2,则的长为 _____.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
( http: / / www.21cnjy.com / )
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
2、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.
( http: / / www.21cnjy.com / )
(1)求证:;
(2)求证:AF是⊙O的切线.
3、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题, ( http: / / www.21cnjy.com )如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
( http: / / www.21cnjy.com / )
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
4、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.
( http: / / www.21cnjy.com / )
(1)求证:AD是O的切线.
(2)若O的半径为4,,求平行四边形OAEC的面积.
5、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.
( http: / / www.21cnjy.com / )
(1)试判断直线与的位置关系,并说明理由;
(2)若,,求阴影部分的面积(结果保留).
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【来源:21·世纪·教育·网】
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
2、A
【解析】
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
( http: / / www.21cnjy.com / )


与圆相切于点,


故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
3、D
【解析】
【分析】
根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.
【详解】
解:∵AB是的直径,

∵CE是的切线,切点为D,

,故A选项正确,

即AD平分,故B选项正确,
设交于点,如图,
( http: / / www.21cnjy.com / )
∵,
∴四边形是矩形

,故C选项正确
若,则
由于点不一定是的中点,故D选项不正确;
故选D
【点睛】
本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.
4、C
【解析】
【分析】
根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.www.21-cn-jy.com
【详解】
解:∵CD是⊙O的切线,
∴∠CDO=90°,
∵∠C=40°,
∴∠COD=90°-40°=50°,
∵OD=OB,
∴∠B=∠ODB,
∵∠COD=∠B+∠ODB,
∴∠B=∠COD=25°,
故选:C.
【点睛】
本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.21·世纪*教育网
5、B
【解析】
【分析】
利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
【详解】
解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
故选:B
【点睛】
本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.21世纪教育网版权所有
6、A
【解析】
【分析】
连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.21教育网
【详解】
解:如图,连接
( http: / / www.21cnjy.com / )

是的切线
故选A
【点睛】
本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
7、C
【解析】
【分析】
根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
【详解】
解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
则:、、,,
∵∠F=60°,
∴为等边三角形,,
∵△FDE的周长为12,即,
∴,即,
作,如下图:
( http: / / www.21cnjy.com / )
则,,
∴,
设,则,由勾股定理可得:,
解得,,
故选C
【点睛】
此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
8、B
【解析】
【分析】
由已知点(2,3)可求该点到x轴 ( http: / / www.21cnjy.com ),y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
【详解】
解:∵点(2,3)到x轴的距离是3,等于半径,
到y轴的距离是2,小于半径,
∴圆与y轴相交,与x轴相切.
故选B.
【点睛】
本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
9、B
【解析】
【分析】
如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA, 再由等边三角形的性质,可得∠OAB=30°,,然后根据锐角三角函数,即可求解.【来源:21cnj*y.co*m】
【详解】
解:如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,
( http: / / www.21cnjy.com / )
根据题意得:OA= ,∠OAB=30°,,
在中,

∴AB=3,即这个正三角形的边长是3.
故选:B
【点睛】
本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.
10、C
【解析】
【分析】
由题意根据函数解析式求得A(-4,0 ( http: / / www.21cnjy.com )),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
( http: / / www.21cnjy.com / )
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.2-1-c-n-j-y
二、填空题
1、5
【解析】
【分析】
直角三角形外接圆的直径是斜边的长.
【详解】
解:由勾股定理得:AB==10,
∵∠ACB=90°,
∴AB是⊙O的直径,
∴这个三角形的外接圆直径是10,
∴这个三角形的外接圆半径长为5,
( http: / / www.21cnjy.com / )
故答案为:5.
【点睛】
本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.【版权所有:21教育】
2、##
3、122.5°
【解析】
【分析】
如图所示,作△ABC外接圆,利用圆周角定理得到∠A=65°,由于I是△ABC的内心,则∠BIC=180°-∠ABC-∠ACB,然后把∠BAC的度数代入计算即可.21*cnjy*com
【详解】
解:如图所示,作△ABC外接圆,
∵点O是△ABC的外心,∠BOC=130°,
∴∠A=65°,
∴∠ABC+∠ACB=115°,
∵点I是△ABC的内心,
∴∠IBC+∠ICB=×115°=57.5°,
∴∠BIC=180°﹣57.5°=122.5°.
故答案为:122.5°.
( http: / / www.21cnjy.com / )
【点睛】
此题主要考查了三角形内心和外心的综合应用,根据题意得出∠IBC+∠ICB的度数是解题关键.
4、4
【解析】
【分析】
连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.
【详解】
如图,连接OB,
∵PB与⊙O相切于点B,
( http: / / www.21cnjy.com / )
∴∠PBO=90°,
∵∠P=30°,OB=2,
∴PO=4,
故答案为:4.
【点睛】
本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.
5、
【解析】
【分析】
连接OA,由切线的性质得出AO⊥AB,得出△OAC是等边三角形,求出∠AOD=120°,由弧长公式可得出答案.【出处:21教育名师】
【详解】
解:连接OA,
∵AB是⊙O的切线,
∴AO⊥AB,
∴∠OAB=90°,
∵∠BAC=30°,
∴∠OAC=60°,
∵OA=OC,
∴△OAC是等边三角形,
∴∠C=∠AOC=60°,
∴∠AOD=120°,
∵CD=2,
∴的长为=.
( http: / / www.21cnjy.com / )
故答案为.
【点睛】
本题考查了切线的性质以及弧长公式,切线的性质定理:圆的切线垂直于过切点的半径;弧长公式:(为圆心角的度数,R表示圆的半径).
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
( http: / / www.21cnjy.com / )
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.21教育名师原创作品
2、 (1)见解析;
(2)见解析
【解析】
【分析】
(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
(2)连接OA,由∠CAF=∠CFA知 ( http: / / www.21cnjy.com )∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
(1)
解:∵,
∴,
又∵,
∴,
∴ ;
(2)
解:如图,连接OA,
( http: / / www.21cnjy.com / )
∵,
∴,
∴,
∵,
∴,
∴,
∵已知,
∴,
∴,
∴,
∴,
∴AF为⊙O的切线.
【点睛】
本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
3、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,

又的运动速度都是2cm/s,

( http: / / www.21cnjy.com / )
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,

在Rt△CDE中,,O是CE的中点.
∴,

∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.www-2-1-cnjy-com
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得

∴,即
∴如图5,当时,与正方形的各边共有6个交点.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
4、 (1)见解析
(2)32
【解析】
【分析】
(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
(2)根据平行四边形OAEC的面积等于2倍即可求解.
(1)
证明:连接OD.
( http: / / www.21cnjy.com / )
∵四边形OAEC是平行四边形,
∴,
又∵,
∴,
∵AB与相切于点B,
∴,
又∵OD是的半径,
∴AD为的切线.
(2)

在Rt△AOD中,
∴平行四边形OABC的面积是
【点睛】
本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.2·1·c·n·j·y
5、 (1)BC与⊙O相切,理由见详解
(2)
【解析】
【分析】
(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
(1)
解: BC与⊙O相切.
证明:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
又∵OD=OA,
∴∠OAD=∠ODA.
∴∠CAD=∠ODA.
∴OD∥AC.
∴∠ODB=∠C=90°,即OD⊥BC.
又∵BC过半径OD的外端点D,
∴BC与⊙O相切;
(2)
∵,∠ODB=90°,,
∴,
在Rt△OBD中,
由勾股定理得:,
∴S△OBD= OD BD= ,S扇形ODF= ,
∴阴影部分的面积=.
【点睛】
本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)