中小学教育资源及组卷应用平台
九年级数学下册第二十九章直线与圆的位置关系月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
2、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
3、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
( http: / / www.21cnjy.com / )
A.19° B.38° C.52° D.76°
4、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
( http: / / www.21cnjy.com / )
A.10 B.11 C.12 D.13
5、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
( http: / / www.21cnjy.com / )
A.20° B.25° C.30° D.40°
6、已知正三角形外接圆半径为,这个正三角形的边长是( )
A. B. C. D.
7、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
8、如图,在平面直角坐标系中,,,.则△ABC的外心坐标为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
9、如图,AB是⊙O的直径,C,D是⊙O上 ( http: / / www.21cnjy.com )两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )
( http: / / www.21cnjy.com / )
A.40° B.50° C.55° D.60°
10、如图,正方形ABCD的边长为8,若经过C,D两点的⊙O与直线AB相切,则⊙O的半径为( )
( http: / / www.21cnjy.com / )
A.4.8 B.5 C.4 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.
2、如图,在△ABC中,AB=AC=,BC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点EF,则扇形AEF的面积为 _____.(结果保留π)
( http: / / www.21cnjy.com / )
3、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.
( http: / / www.21cnjy.com / )
4、如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为_____.
( http: / / www.21cnjy.com / )
5、如图,在中,,平分,平分,,交于点,cm,cm,cm,则的面积为_______cm2.21·世纪*教育网
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,.
( http: / / www.21cnjy.com / )
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
2、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.
( http: / / www.21cnjy.com / )
(1)求证:AD是O的切线.
(2)若O的半径为4,,求平行四边形OAEC的面积.
3、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.
( http: / / www.21cnjy.com / )
(1)求证:DM是的切线;
(2)求证:;
(3)若,,求的半径.
4、如图,PA,PB是圆的切线,A,B为切点.
( http: / / www.21cnjy.com / )
(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
5、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
( http: / / www.21cnjy.com / )
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
①设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,⊙C的半径是 ;
②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为 .
-参考答案-
一、单选题
1、A
【解析】
【分析】
点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
【详解】
解:∵⊙O的半径为4,点P 在⊙O外部,
∴OP需要满足的条件是OP>4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
2、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.21cnjy.com
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
( http: / / www.21cnjy.com / )
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.21世纪教育网版权所有
3、B
【解析】
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
( http: / / www.21cnjy.com / )
为的切线,
故选B
【点睛】
本题考查的是三角形的内角 ( http: / / www.21cnjy.com )和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.【来源:21·世纪·教育·网】
4、A
【解析】
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
( http: / / www.21cnjy.com / )
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
5、B
【解析】
【分析】
连接OA,如图,根据切线的性质 ( http: / / www.21cnjy.com )得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.21*cnjy*com
【详解】
解:连接OA,如图,
( http: / / www.21cnjy.com / )
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
6、B
【解析】
【分析】
如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA, 再由等边三角形的性质,可得∠OAB=30°,,然后根据锐角三角函数,即可求解.
【详解】
解:如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,
( http: / / www.21cnjy.com / )
根据题意得:OA= ,∠OAB=30°,,
在中,
,
∴AB=3,即这个正三角形的边长是3.
故选:B
【点睛】
本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.
7、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.【来源:21cnj*y.co*m】
8、D
【解析】
【分析】
由BC两点的坐标可以得到直线BC∥y轴,则直线BC的垂直平分线为直线y=1,再由外心的定义可知△ABC外心的纵坐标为1,则设△ABC的外心为P(a,-1),利用两点距离公式和外心的性质得到,由此求解即可.【出处:21教育名师】
【详解】
解:∵B点坐标为(2,-1),C点坐标为(2, 3),
∴直线BC∥y轴,
∴直线BC的垂直平分线为直线y=1,
∵外心是三角形三条边的垂直平分线的交点,
∴△ABC外心的纵坐标为1,
设△ABC的外心为P(a,1),
∴,
∴,
解得,
∴△ABC外心的坐标为(-2, 1),
故选D.
【点睛】
本题主要考查了坐标与图形,外心的性质与定义,两点距离公式,解题的关键在于能够熟知外心是三角形三边垂直平分线的交点.
9、C
【解析】
【分析】
连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.
【详解】
解:连接OC,如图所示:
( http: / / www.21cnjy.com / )
∵CE与相切,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.www.21-cn-jy.com
10、B
【解析】
【分析】
连接EO,延长EO交CD于F,连接DO,设半径为x.构建方程即可解决问题.
【详解】
解:设⊙O与AB相切于点E.连接EO,延长EO交CD于F,连接DO,
再设⊙O的半径为x.
( http: / / www.21cnjy.com / )
∵AB切⊙O于E,
∴EF⊥AB,
∵AB∥CD,
∴EF⊥CD,
∴∠OFD=90°,
在Rt△DOF中,∵∠OFD=90°,OF2+DF2=OD2,
∴(8-x)2+42= x2,
∴x=5,
∴⊙O的半径为5.
故选:B.
【点睛】
本题考查了切线的性质、正方形的性 ( http: / / www.21cnjy.com )质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.2·1·c·n·j·y
二、填空题
1、六
【解析】
【分析】
由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.
【详解】
解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:
( http: / / www.21cnjy.com / )
∵半径与边长相等,
∴这个三角形是等边三角形,
∴正多边形的边数:360°÷60°=6,
∴这个正多边形是正六边形
故答案为:六.
【点睛】
本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.
2、##
【解析】
【分析】
先判断出△ABC是等腰直角三角形,从而连接AD,可得出AD=1,直接代入扇形的面积公式进行运算即可.21*cnjy*com
【详解】
解:∵AB=AC=,BC=2,
∴AB2+AC2=BC2,
∴△ABC是等腰直角三角形,
∴∠BAC=90°,
连接AD,则AD=BC=1,
则S扇形AEF=.
故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
本题考查了扇形的面积计算 ( http: / / www.21cnjy.com )、勾股定理的逆定理及等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及∠BAC的度数.
3、##
【解析】
【分析】
连接OB,OD,根据正多边形内角和公式可求出 ( http: / / www.21cnjy.com )∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
【详解】
解:连接OB,OD,
( http: / / www.21cnjy.com / )
∵五边形ABCDE是正五边形,
∴∠E=∠A=.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
∴劣弧BD的长为,
故答案为:.
【点睛】
本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
4、45°##45度
【解析】
【分析】
连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.
【详解】
解:连接OB、OC,
( http: / / www.21cnjy.com / )
∵四边形ABCD是正方形,
∴∠BOC=90°,
∴∠BPC=,
故答案为:45°.
【点睛】
此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.21教育名师原创作品
5、1.5
【解析】
【分析】
根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.
【详解】
解:平分,平分,,交于点,
点是的内心.
如图,画出的内切圆,与、、分别相切于点、、,且连接,
设,,,得方程组:
解得:,
,
的面积.
故答案为:1.5.
( http: / / www.21cnjy.com / )
【点睛】
此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.
三、解答题
1、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E, ( http: / / www.21cnjy.com )连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
( http: / / www.21cnjy.com / )
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
( http: / / www.21cnjy.com / )
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的 ( http: / / www.21cnjy.com )性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.www-2-1-cnjy-com
2、 (1)见解析
(2)32
【解析】
【分析】
(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
(2)根据平行四边形OAEC的面积等于2倍即可求解.
(1)
证明:连接OD.
( http: / / www.21cnjy.com / )
∵四边形OAEC是平行四边形,
∴,
又∵,
∴,
∵AB与相切于点B,
∴,
又∵OD是的半径,
∴AD为的切线.
(2)
∵
在Rt△AOD中,
∴平行四边形OABC的面积是
【点睛】
本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.2-1-c-n-j-y
3、 (1)见解析
(2)见解析
(3)⊙O的半径为5.
【解析】
【分析】
(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
(3)根据垂径定理和勾股定理即可求出结果.
(1)
证明:连接OD交BC于H,如图,
( http: / / www.21cnjy.com / )
∵点E是△ABC的内心,
∴AD平分∠BAC,
即∠BAD=∠CAD,
∴,
∴OD⊥BC,BH=CH,
∵DM∥BC,
∴OD⊥DM,
∴DM是⊙O的切线;
(2)
证明:∵点E是△ABC的内心,
( http: / / www.21cnjy.com / )
∴∠ABE=∠CBE,
∵,
∴∠DBC=∠BAD,
∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
即∠BED=∠DBE,
∴BD=DE;
(3)
解:设⊙O的半径为r,
连接OD,OB,如图,
( http: / / www.21cnjy.com / )
由(1)得OD⊥BC,BH=CH,
∵BC=8,
∴BH=CH=4,
∵DE=2,BD=DE,
∴BD=2,
在Rt△BHD中,BD2=BH2+HD2,
∴(2)2=42+HD2,解得:HD=2,
在Rt△BHO中,
r2=BH2+(r-2)2,解得:r=5.
∴⊙O的半径为5.
【点睛】
本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.21教育网
4、 (1)见解析;
(2)见解析,的半径为
【解析】
【分析】
(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
(1)
如图所示,点O即为所求
( http: / / www.21cnjy.com / )
(2)
如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
∴∠CAP=90°,PA=PB=3,∠CBO=90°,
∵AC=4,
∴PC==5,BC=5-3=2,
设圆的半径为x,则OC=4-x,
∴,
解得x=,
故圆的半径为.
【点睛】
本题考查了垂线的画法,角的平分 ( http: / / www.21cnjy.com )线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.【版权所有:21教育】
5、 (1)①(4,3)或C(4, 3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4, 3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.21·cn·jy·com
(1)
①如图1中,
( http: / / www.21cnjy.com / )
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4, 3)也满足条件,
故答案是:(4,3)或C(4, 3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
( http: / / www.21cnjy.com / )
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
( http: / / www.21cnjy.com / )
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)