1.2 数轴、相反数与绝对值
1.2.3 绝对值
教学目标:
1、知识与技能:(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法
通过观察实例及绝对值的几何意义,探索一个的绝对值与这个数之间的关系,培养学生语言描述能力。
重点、难点: 1、重点:正确理解绝对值的概念,能求一个数的绝对值。:
2、难点:正确理解绝对值的几何意义和代数意义。
教学过程:
一、创设情景,导入新课
(学生练习)
1、下列各数中:
+7,-2,,-8.3,0,+0.01,-,1,哪些是正数 哪些是负数?哪些是非负数?
2、什么叫做数轴 画一条数轴,并在数轴上标出下列各数:
-3,4,0,3,-1.5,-4,,2
3、问题2中有哪些数互为相反数 从数轴上看,互为相反数的一对有理数有什么特点
4、怎样表示一个数的相反数
二、合作交流,解读探究
1、两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。
我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向。当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)?,这里的5叫做+5的绝对值,4叫做-4的绝对值。
(挂出小黑板:课本P11图)
如上图,学校位于数轴的原点处,小光、小明、小亮家分别位于点A、B、C处,单位长度表示1千米。
教师活动:提问,小光、小明、小亮家分别距学校多远?
学生活动:分小组讨论,每位同学说出自己的结论,并与同伴交流。
教师:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。如在数轴上,小光家所在的位置对应的数是-2,与原点的距离是2,那就是说,-2的绝对值是2,记作=2;小明家所在的位置对应的数是+1,与原点的距离是1,那就是说+1的绝对值是1,记作=1。
提问:互为相反数的两个数的绝对值有什么关系?
学生口答,师生共同订正。
2、探索绝对值的性质
例1、试一试,填空:
= ; = ; = ;
=
= ; = ;= ;
教师提出问题:你能从上面的解答中发现什么规律吗?
提出:所得的结果与绝对值符号内的数有什么关系?鼓励学生观察例1,并根据绝对值的概念得出结论,并用自己的语言描述所得的结论。
3、教师活动:肯定学生的做法,最后归纳结论。
正数的绝对值是它本身,如:=12
0的绝对值是0
负数的绝对值是它的相反数,如:=7.5
三、应用迁移,巩固提高
1、例2,绝对值等于8.7的有理数有哪些?
学生活动:在练习本上解答,同伴交换见解,教师巡视。
教师了解学生的情况,然后指出并板书:互为相反数的两个数的绝对值相等。
2、练习:课本P12第2题。
四、总结反思
请部分同学回顾本节课所学内容,小结:
1、绝对值的概念。 2、绝对值的性质:
正数的绝对值是它本身; 0的绝对值是0;负数的绝对值是它的相反数。
五、作业