中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目 ( http: / / www.21cnjy.com )指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )
A. B. C. D.
2、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
3、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )2·1·c·n·j·y
A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1
C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于7
4、某学校九年级为庆祝建党一百周年举办“歌 ( http: / / www.21cnjy.com )唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )
A.一班抽到的序号小于6 B.一班抽到的序号为9
C.一班抽到的序号大于0 D.一班抽到的序号为7
5、一个不透明的口袋里有红、黄、蓝三种颜色 ( http: / / www.21cnjy.com )的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为( )
A. B. C. D.
6、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )
A. B. C. D.
7、在一个口袋中有2个完全相同的小球,它们 ( http: / / www.21cnjy.com )的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )
A. B. C. D.
8、在一个不透明的袋中装有仅颜色不同的 ( http: / / www.21cnjy.com )白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:
摸球次数 10 40 80 200 500 800
摸到红球次数 3 16 20 40 100 160
摸到红球的频率 0.3 0.4 0.25 0.2 0.2 0.2
则袋中的红球个数可能有( )
A.16个 B.8个 C.4个 D.2个
9、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是
B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球21·cn·jy·com
C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同www-2-1-cnjy-com
D.在同一年出生的400个同学中至少会有2个同学的生日相同
10、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )2-1-c-n-j-y
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某水果公司以2.2元/千克的成本价购进10000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如表:【来源:21cnj*y.co*m】
抽取的苹果总质量 100 200 300 400 500 1000
损坏苹果质量 10.60 19.42 30.63 39.24 49.54 101.10
苹果损坏的频率 0.106 0.097 0.102 0.098 0.099 0.101
①估计这批苹果损坏的概率为________(精确到0.1);
②据此,若公司希望这批苹果能获得利润23000元,则销售时(去掉损坏的苹果)售价应定为________元/千克.www.21-cn-jy.com
2、佳禾同学2021年10月的某一天去电影 ( http: / / www.21cnjy.com )院看电影《长津湖》,“买了一张电影票座位号是偶数”属于 _____(填“必然事件”、“随机事件”或“不可能事件”).21教育名师原创作品
3、某路口的交通信号灯红灯亮35秒,绿灯亮60秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是_________.21*cnjy*com
4、时隔十三年,奥运圣火再次在北京点 ( http: / / www.21cnjy.com )燃.北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”.墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是________.
5、一个不透明的袋子装有除颜色外其余 ( http: / / www.21cnjy.com )均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.
三、解答题(5小题,每小题10分,共计50分)
1、某校计划在暑假第二周的星期一至星期五开展社会实践活动,要求每位学生选择两天参加活动.
(1)甲同学随机选择两天,其中一天是星期五的概率是多少?
(2)乙同学随机选择连续的两天,其中一天是星期五的概率是多少?
2、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子.21*cnjy*com
( http: / / www.21cnjy.com / )
(1)“小明抽到面值为80分的邮票”是______事件(填“随机”“不可能”或“必然”);
(2)小明先随机抽取一个盒 ( http: / / www.21cnjy.com )子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率.
3、放假期间,小明和小华准备到白马湖度 ( http: / / www.21cnjy.com )假区(记为A)、金湖水上森林公园(记为B)、盱眙铁山寺国家森林公园(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可能性相同.
(1)小明选择去白马湖度假区的概率是 .
(2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率.
4、某小区为了改善生态环 ( http: / / www.21cnjy.com )境,促进生活垃圾的分类处理,将生活垃圾分为三类:厨余、可回收和其他,分别记为a、b、c,并且设置了相应的垃圾箱,分别贴上“厨余垃圾”、“可回收物”和“其他垃圾”,分别记为A,B,C.
(1)若将三类不同的生活垃圾随机投入三类垃圾箱,请用画树状图或列表的方法求垃圾全部投放正确的概率;
(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共10吨生活垃圾,数据统计如下(单位:吨):
A B C
a 3 0.8 1.2
b 0.24 0.3 2.46
c 0.32 0.28 1.4
该小区所在城市每天大约产生500吨生活垃圾,根据以上信息,试估算其中“可回收垃圾”每天投放正确的有多少吨?
5、钟南山院士谈到防护新型冠状病 ( http: / / www.21cnjy.com )毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”学校为鼓励学生抗疫期间在家阅读,组织九年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.
( http: / / www.21cnjy.com / )
(1)本次共抽查学生______人,并将条形统计图补充完整;
(2)在九年级1000名学生中,读书15本及以上(含15本)的学生估计有多少人?
(3)在九年级六班共有50名学生 ( http: / / www.21cnjy.com ),其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.
-参考答案-
一、单选题
1、C
【分析】
根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.
【详解】
解:列树状图如下所示:
( http: / / www.21cnjy.com / )
根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,
∴恰好有两次正面朝上的事件概率是:.
故选C.
【点睛】
本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.
2、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可 ( http: / / www.21cnjy.com )能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、C
【分析】
将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.
【详解】
解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;
B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;
C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;
D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事 ( http: / / www.21cnjy.com )件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21教育网
4、C
【分析】
必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.
【详解】
解:A中一班抽到的序号小于是随机事件,故不符合要求;
B中一班抽到的序号为是不可能事件,故不符合要求;
C中一班抽到的序号大于是必然事件,故符合要求;
D中一班抽到的序号为是随机事件,故不符合要求;
故选C.
【点睛】
本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.
5、D
【分析】
在一个不透明的口袋里有红、 ( http: / / www.21cnjy.com )黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.21·世纪*教育网
【详解】
解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,
红球有:个,
则随机摸出一个红球的概率是:.
故选:D.
【点睛】
本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.
6、B
【分析】
由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.
【详解】
解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,
∴从袋中任意摸出一个球,摸出的球是红球的概率是:.
故选:B.
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
7、B
【分析】
列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.
【详解】
解:列表如下:
1 2
1 2 3
2 3 4
由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,
所以两次摸出的小球的标号之和是3的概率为,
故选:B.
【点睛】
本题考查了列表法与树状图法:利用列表 ( http: / / www.21cnjy.com )法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.【版权所有:21教育】
8、C
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球800次红球出现了160次,
∴摸到红球的概率约为,
∴20个球中有白球20×=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
9、D
【分析】
A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.
【详解】
解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;
B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;
C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;
D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;
故选D.
【点睛】
本题考察了概率.解题的关键与难点在于了解概率概念与求解.
10、A
【分析】
用红球的个数除以所有球的个数即可求得抽到红球的概率.
【详解】
解:∵共有5个球,其中红球有2个,
∴P(摸到红球)=,
故选:A.
【点睛】
此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题
1、
【分析】
①根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计苹果的损坏概率为0.1;
②根据概率计算出完好苹果的质量为10000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=成本+利润”列方程解答.
【详解】
解:①根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.1左右, 所以苹果的损坏概率为0.1.
②根据估计的概率可以知道,在10000千克苹果中完好苹果的质量为10000×0.9=9000千克.
设每千克苹果的销售价为x元,
则应有9000x=2.2×10000+23000,
解得x=5.
答:出售苹果时每千克大约定价为5元可获利润23000元.
故答案为:0.1,5.
【点睛】
本题考查了利用频率估计概率,用到的知识点为:频率=所求情况数与总情况数之比,理解销售额等于成本加上利润是解决(2)的关键.
2、随机事件
【分析】
根据确定事件和随机事件的定义来区分 ( http: / / www.21cnjy.com )判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
“买了一张电影票座位号是偶数”属于随机事件
故答案为:随机事件
【点睛】
本题考查了随机事件的定义,熟悉定义是解题的关键.
3、
【分析】
根据概率公式,即可求解.
【详解】
解:根据题意得:当小明到达该路口时,遇到红灯的概率是 .
故答案为:
【点睛】
本题考查了概率公式:熟练掌 ( http: / / www.21cnjy.com )握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.
4、
【分析】
先画树状图得到所有的等可能性的结果数,然后找到两人同坐2号车的结果数,再依据概率公式求解即可.
【详解】
解:列树状图如下:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种,
∴两人同坐2号车的概率,
故答案为:.
【点睛】
本题主要考查了树状图法或列表法求解概率,熟知树状图或列表法求解概率是解题的关键.
5、8
【分析】
首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.
【详解】
解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,
∴摸出红球的概率为0.2,
由题意,,
解得:,
经检验,是原方程的解,且符合题意,
三、解答题
1、(1);(2)
【分析】
(1)由树状图得出共有20个等可能的结果,其中有一天是星期二的结果有8个,由概率公式即可得出结果;
(2)乙同学随机选择连续的两天,共有4 ( http: / / www.21cnjy.com )个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五);其中有一天是星期五的结果有1个,由概率公式即可得出结果.21cnjy.com
【详解】
解:(1)根据题意画图如下:
( http: / / www.21cnjy.com / )
由树状图可知,共有20个等可能的结果,甲同学随机选择两天,其中有一天是星期五的结果有8个,
∴甲同学随机选择两天,其中有一天是星期五的概率为;
(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),
其中有一天是星期五的结果有1个,即(星期四,星期五),
∴乙同学随机选择连续的两天,其中有一天是星期五的概率是.
【点睛】
此题考查的是用列表法或树 ( http: / / www.21cnjy.com )状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等).
【分析】
(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;
(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可.
【详解】
解:(1)∵三张邮票里面没有80分的邮票
∴“小明抽到面值为80分的邮票”是不可能事件,
故答案为:不可能;
(2)设A、B、C分别代表120分、150分、50分的邮票,
列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种
∴P(两个盒子里邮票的面值恰好相等).
【点睛】
本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键.
3、(1);(2).
【分析】
(1)直接利用概率公式求解可得.
(2)先画出树状图,根据树状图可以求得所有等可能的结果以及他们分别去不同景点游览的情况,再利用概率公式即可求得答案.【来源:21·世纪·教育·网】
【详解】
解:(1)小明选择去白云山游览的概率是;
故答案为:;
(2)画树状图得:
( http: / / www.21cnjy.com / )
∵共有9种等可能的结果,小明和小华分别去不同景点游览的情况有6种结果,
∴小明和小华分别去不同景点游览的概率为.
【点睛】
此题考查随机事件的概率计算,涉及到树状图法表示概率的方法.
4、(1)图表见解析,;(2)15吨
【分析】
(1)根据题意,画出树状图,即可求解;
(2)根据题意,先求出“可回收垃圾”投放正确的概率,即可求解.
【详解】
解:(1)列树状图如下:
( http: / / www.21cnjy.com / )
所有等可能的情况数有6种,其中垃圾完全投放正确的有1种,
∴垃圾投放正确的概率为;
(2)“可回收垃圾”投放正确的概率为;
“可回收垃圾”每天投放正确的有(吨).
【点睛】
本题主要考查了画树状图求概率,用样本估计总体,明确题意,熟练掌握求概率的方法是解题的关键.
5、(1)50,图见解析;(2)500人;(3)图表见解析,
【分析】
(1)由题意根据C的人数和所占的百分比,可以求得本次共抽查学生人数,然后即可计算出读书10本的人数,从而可以将条形统计图补充完整;【出处:21教育名师】
(2)由题意根据条形统计图中的数据,可以计算出读书15本及以上(含15本)的学生估计有多少人;
(3)根据题意,可以画出相应的树状图,从而可以求出恰好是两位男生分享心得的概率.
【详解】
解:(1)本次共抽查学生14÷28%=50(人),
故答案为:50;
50-9-14-7-4=16(人),
补全的条形统计图如图所示,
( http: / / www.21cnjy.com / )
(2)(人),
即读书15本及以上(含15本)的学生估计有500人.
(3)树状图如下图所示,
( http: / / www.21cnjy.com / )
一共有12种可能性,其中恰好是两位男生可能性有2种,
故恰好是两位男生分享心得的概率是.
【点睛】
本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)