中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题 ( http: / / www.21cnjy.com )目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
2、布袋内装有1个黑球和2个 ( http: / / www.21cnjy.com )白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )21教育网
A. B. C. D.
3、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )2·1·c·n·j·y
A. B. C. D.
4、下列事件为随机事件的是( )
A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖
C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于7
5、下列事件中是不可能事件的是( )
A.铁杵成针 B.水滴石穿 C.水中捞月 D.百步穿杨
6、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是( )21·世纪*教育网
( http: / / www.21cnjy.com / )
A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数
B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
7、把形状完全相同风景不同的两张图片全部 ( http: / / www.21cnjy.com )从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
8、 “翻开数学书,恰好翻到第16页”,这个事件是( )
A.随机事件 B.必然事件 C.不可能事件 D.确定事件
9、下列事件是必然事件的是( )
A.同圆中,圆周角等于圆心角的一半
B.投掷一枚均匀的硬币100次,正面朝上的次数为50次
C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天
D.把一粒种子种在花盆中,一定会发芽
10、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:
抛掷次数m 500 1000 1500 2000 2500 3000 4000 5000
“正面向上”的次数n 265 512 793 1034 1306 1558 2083 2598
“正面向上”的频率 0.530 0.512 0.529 0.517 0.522 0.519 0.521 0.520
下面有3个推断:
①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;
②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;www-2-1-cnjy-com
③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )【版权所有:21教育】
A.② B.①③ C.②③ D.①②③
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、从1、-1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_________.
2、一个不透明的袋子里有3个红球和5 ( http: / / www.21cnjy.com )个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_________(填“大于”“小于”或“等于”)是白球的可能性.21*cnjy*com
3、如图,一个可以自由转动且质地均 ( http: / / www.21cnjy.com )匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.
( http: / / www.21cnjy.com / )
4、在一个不透明的袋子中装有 ( http: / / www.21cnjy.com )红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.
5、有两个正方体的积木块,如图所示.
( http: / / www.21cnjy.com / )
下面是小怡投掷某块积木200次的情况统计表:
灰色的面朝上 白色的面朝上
32次 168次
根据表中的数据推测,小怡最有可能投掷的是______号积木.
三、解答题(5小题,每小题10分,共计50分)
1、一个口袋中有10个黑 ( http: / / www.21cnjy.com )球和若干个白球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?
2、现有A、B两个不透明的袋子,A袋中的 ( http: / / www.21cnjy.com )两个小球分别标记数字1,2;B袋中的三个小球分别标记数字3,4,5.这五个小球除标记的数字外,其余完全相同.分别将A、B两个袋子中的小球摇匀,然后小明从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求小明摸出的这两个小球标记的数字之和为5的概率.
3、某生物制剂公司以箱养的 ( http: / / www.21cnjy.com )方式培育一批新品种菌苗,每箱有40株菌苗.若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂.某日工作人员随机抽检20箱菌苗,结果如表:
箱数 6 2 5 4 2 4
每箱中失活菌苗株数 0 1 2 3 5 6
(1)抽检的20箱平均每箱有多少株失活菌苗
(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂.请估计事件A的概率.
4、某校计划在暑假第二周的星期一至星期五开展社会实践活动,要求每位学生选择两天参加活动.
(1)甲同学随机选择两天,其中一天是星期五的概率是多少?
(2)乙同学随机选择连续的两天,其中一天是星期五的概率是多少?
5、口袋装有3只形状大小一样的球,其 ( http: / / www.21cnjy.com )中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由www.21-cn-jy.com
-参考答案-
一、单选题
1、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可 ( http: / / www.21cnjy.com )能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【来源:21cnj*y.co*m】
2、B
【分析】
先画出树状图,再根据概率公式即可完成.
【详解】
所画树状图如下:
( http: / / www.21cnjy.com / )
事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:
故选:B
【点睛】
本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.
3、D
【分析】
根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可.
【详解】
解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,
∴抽到每个球的可能性相同,
∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,
∴P(白球).
故选:D.
【点睛】
本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.
4、B
【分析】
根据事件发生的可能性大小判断.
【详解】
解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;
B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;
C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;
D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;
故选:B.
【点睛】
本题考查的是必然事件、不可能事 ( http: / / www.21cnjy.com )件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、C
【分析】
根据随机事件,必然事件和不可能事件的定义,逐项即可判断.
【详解】
A、铁杵成针,一定能达到,是必然事件,故选项不符合;
B、水滴石穿, 一定能达到,是必然事件,故选项不符合;
C、水中捞月,一定不能达到,是不可能事件,故选项符合;
D、百步穿杨,不一定能达到,是随机事件,故选项不符合;
故选:C
【点睛】
本题考查了随机事件,必然事件,不 ( http: / / www.21cnjy.com )可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、B
【分析】
由图象可知,该实验的概率趋近于0.3-0.4之间,依次判断选项所对应实验的概率即可.
【详解】
A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数,概率为,选项与题意不符,故错误.【出处:21教育名师】
B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球,概率为,选项与题意符合,故正确.
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃,选项与题意不符,故错误.
D.掷一个质地均匀的正六面体骰子,向上的面点数是4,概率为,选项与题意不符,故错误.
故选:B
【点睛】
本题考察了用频率估计概率,当实验次数足够多时 ( http: / / www.21cnjy.com ),出现结果的频率可以看作是该结果出现的概率,本题通过图象可以估计出概率的范围,再依次判断各选项即可.
7、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
( http: / / www.21cnjy.com / )
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
8、A
【分析】
随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.
【详解】
解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;
故选A
【点睛】
本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.
9、C
【分析】
直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.
【详解】
A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;
B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;
C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;
D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.
故选:C.
【点睛】
本题考查的是必然事件、不可能 ( http: / / www.21cnjy.com )事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10、C
【分析】
根据概率公式和图表给出的数据对各项进行判断,即可得出答案.
【详解】
解:①当抛掷次数是1000时 ( http: / / www.21cnjy.com ),“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;
②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;
③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;
故选:C.
【点睛】
本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
二、填空题
1、
【分析】
根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.
【详解】
解:列表得:
-1 1 0
-1 --- (1,-1) (0,-1)
1 (-1,1) --- (0,1)
0 (-1,0) (1,0) ---
所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,
所以该点在坐标轴上的概率.
故答案为:.
【点睛】
本题考查列表法与树状图法和点的坐标特征,注意 ( http: / / www.21cnjy.com )掌握通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
2、小于
【分析】
根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.
【详解】
解:∵袋子里有3个红球和5个白球,
∴红球的数量小于白球的数量,
∴从中任意摸出1只球,是红球的可能性小于白球的可能性.
故答案为:小于.
【点睛】
本题考查了可能性的大小,可能性大小的 ( http: / / www.21cnjy.com )比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.
3、
【分析】
指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.
【详解】
解:观察转盘灰色区域的面积与总面积的比值为
故答案为:.
【点睛】
本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.
4、6
【分析】
由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.
【详解】
解:由题意可得,
20×0.30=6(个),
即袋子中黄球的个数最有可能是6个.
故答案为:6.
【点睛】
本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.
5、②
【分析】
计算出①号积木、②号积木朝上的面为白色、为灰色的概率,再求出小怡掷200次积木的实验频率,进行判断即可.【来源:21·世纪·教育·网】
【详解】
①号积木由于三面灰色,三面白色,因此随机掷1次,朝上的面是白色、灰色的可能性都是,
②号积木由于一面灰色,五面白色,因此随机掷1次,朝上的面是灰色的可能性都是,是白色的可能性为,
由表格中的数据可得,小怡掷200次积木得到朝上的面为灰色的频率为,白色的频率为,
故选择的是②号积木,
理由:小怡掷200次积木的实验频率接近于②号积木相应的概率.
故答案为②
【点睛】
本题主要考查频率与概率的关系,解题的关键是正确理解实验频率与概率的关系.
三、解答题
1、40
【分析】
根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.21cnjy.com
【详解】
解:设小球共有x个,根据题意可得:
解得:x=40.
经检验x=40,为方程的解且符合题意,
答:袋中共有40个球
【点睛】
此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.
2、
【分析】
作列表,共有6种可能的结果,摸出的这两个小球标记的数字之和为5的结果有2种,再由概率公式求解即可.
【详解】
解:列表如下:
1 2
3 (1,3) (2,3)
4 (1,4) (2,4)
5 (1,5) (2,5)
共有6种等可能结果,其中小明摸出的两个小球标记的数字之和为5有2种,
∴P(摸出的两个小球标记的数字之和为5)==
【点睛】
本题考查了树状图法或列表求概率,正确画出树状图或列表是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.21·cn·jy·com
3、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为
【分析】
(1)根据题意及表格可直接进行求解;
(2)由题意知当每箱中失活菌苗株数为40×10%=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解.2-1-c-n-j-y
【详解】
解:(1)由表格得:
(株);
答:抽检的20箱平均每箱有2.9株失活菌苗;
(2)由题意得:40×10%=4株,
∴当每箱中失活菌苗株数为4株时,则需喷洒营养剂,
∴,
即事件A的概率为.
【点睛】
本题主要考查概率,熟练掌握概率的求解是解题的关键.
4、(1);(2)
【分析】
(1)由树状图得出共有20个等可能的结果,其中有一天是星期二的结果有8个,由概率公式即可得出结果;
(2)乙同学随机选择连续的两天,共有4个等可 ( http: / / www.21cnjy.com )能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五);其中有一天是星期五的结果有1个,由概率公式即可得出结果.21*cnjy*com
【详解】
解:(1)根据题意画图如下:
( http: / / www.21cnjy.com / )
由树状图可知,共有20个等可能的结果,甲同学随机选择两天,其中有一天是星期五的结果有8个,
∴甲同学随机选择两天,其中有一天是星期五的概率为;
(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),21教育名师原创作品
其中有一天是星期五的结果有1个,即(星期四,星期五),
∴乙同学随机选择连续的两天,其中有一天是星期五的概率是.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法 ( http: / / www.21cnjy.com )可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
5、这个游戏对双方是不公平的,理由见解析
【分析】
首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.
【详解】
解:这个游戏对双方是不公平的.
如图,
( http: / / www.21cnjy.com / )
∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,
∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.
【点睛】
本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)