【必考点解析】沪教版(上海)八下 第二十三章概率初步综合测试试卷(精选含答案)

文档属性

名称 【必考点解析】沪教版(上海)八下 第二十三章概率初步综合测试试卷(精选含答案)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-25 17:43:58

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。2·1·c·n·j·y
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是(  )
A. B. C. D.
2、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )
A.的值一定是
B.的值一定不是
C.m越大,的值越接近
D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性
3、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
4、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?
下面分别是甲、乙两名同学的答案:
游戏次数 100 200 400 1000
频率 0.32 0.34 0.325 0.332
甲:掷一枚质地均匀的骰子,向上的点数与4相差1;
乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”(  )
A.甲正确,乙错误 B.甲错误,乙正确
C.甲、乙均正确 D.甲、乙均错误
5、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为(  )21·世纪*教育网
A. B. C. D.
6、下列说法正确的是(  )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
7、下列事件中,属于必然事件的是(  )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
8、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )【出处:21教育名师】
( http: / / www.21cnjy.com / )
A. B. C. D.1
9、如图,正方形网格中,黑色部分的图形构 ( http: / / www.21cnjy.com )成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )【版权所有:21教育】
( http: / / www.21cnjy.com / )
A. B. C. D.
10、不透明的袋子中有4个球,上面分别标有1 ( http: / / www.21cnjy.com ),2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )21教育名师原创作品
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则以为坐标的点在直线上的概率为______.
2、在20以内的素数中,随机抽取其中的一个素数,则所抽取的素数是偶数的可能性大小是______.
3、在一个不透明的布袋中,黄色、红色的乒乓 ( http: / / www.21cnjy.com )球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.
4、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:21·cn·jy·com
实验的稻种数n∕粒 800 800 800 800 800
发芽的稻种数m∕粒 763 757 761 760 758
发芽的频率 0.954 0.946 0.951 0.950 0.948
在与实验条件相同的情况下,估计种 ( http: / / www.21cnjy.com )一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.21世纪教育网版权所有
5、从这四个数中选一个数,选出的这个数是无理数的概率为___.
三、解答题(5小题,每小题10分,共计50分)
1、2021年6月17日,神舟十 ( http: / / www.21cnjy.com )二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中,通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
(1)“A志愿者被选中”是______ 事件(填“随机”或“不可能”或“必然”);
(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率.
2、一个纸箱内装有三张正面分别标有 ( http: / / www.21cnjy.com )数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.21*cnjy*com
3、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.
(1)用画树状图或列表的方法求从袋中同时摸出的两个球都是黄球的概率;
(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.
4、在“双减”政策下,某学校 ( http: / / www.21cnjy.com )自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率.
5、2021年教育部出台了关于中小学生作业、睡眠、手机、读物、体质五个方面的管理,简称“五项管理”,这是推进立德树人,促进学生全面发展的重大举措.某班为培养学生的阅读习惯,利用课外时间开展以“走近名著”为主题的读书活动,有6名学生喜欢四大名著,其中2人(记为,)喜欢《西游记),2人(记为,)喜欢《红楼梦》,1人(记为C)喜欢《水浒传》,1人(记为D)喜欢《三国演义》.
(1)如果从这6名学生中随机抽取1人担任读书活动宣传员,求抽到的学生恰好喜欢《西游记》的概率.
(2)如果从这6名学生中随机抽取2人担任读书活动宣传员,求抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率.
-参考答案-
一、单选题
1、B
【分析】
根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.
【详解】
解:随机掷一枚质地均匀的硬币三次,
( http: / / www.21cnjy.com / )
根据树状图可知至少有两次正面朝上的事件次数为:4,
总的情况为8次,
故至少有两次正面朝上的事件概率是:.
故选:B.
【点睛】
本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.
2、D
【分析】
根据频率与概率的关系以及随机事件的定义判断即可
【详解】
投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;21*cnjy*com
故选:D
【点睛】
本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.
3、B
【分析】
由题意,只要求出阴影部分与矩形的面积比即可.
【详解】
解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,
由几何概型公式得到最终停在阴影方砖上的概率为:;
故选:B.
【点睛】
本题将概率的求解设置于黑白 ( http: / / www.21cnjy.com )方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
4、C
【分析】
由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.
【详解】
由表可知该种结果出现的概率约为
∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6
∴向上的点数与4相差1有3、5
∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为
∴甲的答案正确
又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为
∴乙的答案正确
综上所述甲、乙答案均正确.
故选C.
【点睛】
本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.
5、C
【分析】
从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.
【详解】
解:∵装有7个只有颜色不同的球,其中4个黑球,
∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.
故选:C.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.21cnjy.com
6、D
【分析】
根据随机事件的定义,对选项中的事件进行判断即可.
【详解】
解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;
B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;www.21-cn-jy.com
D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.www-2-1-cnjy-com
7、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事 ( http: / / www.21cnjy.com )件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【来源:21cnj*y.co*m】
8、C
【分析】
根据中心对称图形的定义,即把一个图形绕着某一 ( http: / / www.21cnjy.com )点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
, ( http: / / www.21cnjy.com / ), ( http: / / www.21cnjy.com / ),
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
9、B
【分析】
根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.
【详解】
解:如图所示:
( http: / / www.21cnjy.com / )
根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,
只有4种是轴对称图形,分别标有1,2,3,4;
使黑色部分的图形仍然构成一个轴对称图形的概率是:.
故选:B.
【点睛】
本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).
10、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
二、填空题
1、
【分析】
首先画出树状图即可求得所有等可能的结果与点(a,b)在直线上的情况,然后利用概率公式求解即可求得答案.【来源:21·世纪·教育·网】
【详解】
解:画树状图得:
( http: / / www.21cnjy.com / )
由树形图可知:一共有12种等可能的结果,其中点(a,b)在直线上的有3种结果,
所以点(a,b)在直线上的概率为,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概 ( http: / / www.21cnjy.com )率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2、
【分析】
先确定素数有2,3,5,7,11,13,17,19有8个,是偶数的只有一个2,根据定义计算即可.
【详解】
∵20以内的素数有2,3,5,7,11,13,17,19有8个,是偶数的只有一个2,
∴所抽取的素数是偶数的可能性大小是,
故答案为:.
【点睛】
本题考查了素数即除了1和它自身外,不能被其他自然数整除的数,可能性大小的计算,熟练掌握可能性大小的计算是解题的关键.2-1-c-n-j-y
3、4
【分析】
设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.
【详解】
设黄球的个数为x,
∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,
∴,
解得:,
∴布袋中红色球的个数很可能是(个).
故答案为:4.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.
4、0.95 1.9
【分析】
(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;
(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.
【详解】
解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;
(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).
故答案为:(1)0.95;(2)1.9.
【点睛】
本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.
5、
【分析】
确定无理数的个数,利用概率公式计算.
【详解】
解:这四个数中无理数有,
∴选出的这个数是无理数的概率为,
故答案为:.
【点睛】
此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键.
三、解答题
1、 (1)随机;(2)见解析
【分析】
(1)根据随机事件、不可能事件及必然事件的概念求解即可;
(2)画树状图,得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.
【详解】
(1)根据随机事件的概念,A志愿者被选中是随机事件上,
故答案为:随机.
(2) ( http: / / www.21cnjy.com / )
由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同.其中A,B两名志愿者同时被选中的有2种.
∴P(A,B两名志愿者同时被选中)=
【点睛】
此题考查的是用列表法或树 ( http: / / www.21cnjy.com )状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2、画树状图见解析,P两次取得数字的绝对值相等
【分析】
先列出树状图得到所有的等可能性的结果数,然后找到两次取得数字的绝对值相等的结果数,最后根据概率公式求解即可.
【详解】
解:列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果数,
∵,,,
∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等,
∴由树状图可知两次取得数字的绝对值相等的结果数有5种,
∴P两次取得数字的绝对值相等.
【点睛】
本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握列表法或树状图法求解概率.
3、(1);(2)4
【分析】
(1)根据题意画出树状图求出所有等可能的结果数和同时摸出的两个球都是黄球的结果数,然后根据概率公式求解即可;21教育网
(2)设放入袋中的黑球的个数为x,根据从袋中摸出一个球是黑球的概率是,列方程求解即可.
【详解】
解:(1)画树状图为:
( http: / / www.21cnjy.com / )
共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,
所以从袋中同时摸出的两个球都是黄球的概率==;
(2)设放入袋中的黑球的个数为x,
根据题意得
解得x=4,
所以放入袋中的黑球的个数为4.
【点睛】
本题考查的是用列表法或画树 ( http: / / www.21cnjy.com )状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,
所以他们两人恰好选修球类的概率==.
【点睛】
本题考查了列表法与树状图法:利 ( http: / / www.21cnjy.com )用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
5、(1)抽到的学生恰好喜欢《西游记》的概率为;(2)抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.
【分析】
(1)根据题意及概率公式可直接进行求解;
(2)根据题意列出表格,然后问题可求解.
【详解】
解:(1)由题意得:抽到的学生恰好喜欢《西游记》的概率为;
(2)由题意可得列表如下:
C D
/ √ √ √ √ √
√ / √ √ √ √
√ √ / √ √ √
√ √ √ / √ √
C √ √ √ √ / √
D √ √ √ √ √ /
∴由表格可知共有30种等可能的情况,其中恰好1人喜欢《西游记》1人喜欢《红楼梦》的可能性有8种,
∴抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.
【点睛】
本题主要考查概率,熟练掌握利用列表法求解概率是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)