【必考点解析】沪教版(上海)八下 第二十三章概率初步定向测评试题(精选,含解析)

文档属性

名称 【必考点解析】沪教版(上海)八下 第二十三章概率初步定向测评试题(精选,含解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-25 17:46:17

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题 ( http: / / www.21cnjy.com )目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、假如每个鸟卵都可以成功孵化小鸟,且孵化出 ( http: / / www.21cnjy.com )的小鸟是雄性和雌性的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一个雌性一个雄性的概率是( )www-2-1-cnjy-com
A. B. C. D.
2、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )21*cnjy*com
A. B. C. D.
3、有两个事件,事件(1): ( http: / / www.21cnjy.com )购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
4、下列说法正确的有( )
①等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形.
②无理数在和之间.
③从,,,,这五个数中随机抽取一个数,抽到无理数的概率是.
④一元二次方程有两个不相等的实数根.
⑤若边形的内角和是外角和的倍,则它是八边形.
A.个 B.个 C.个 D.个
5、一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为(  )21教育名师原创作品
A.35个 B.60个 C.70个 D.130个
6、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是(  )
A. B. C. D.
7、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )
A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1
C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于7
8、下列事件为必然事件的是(  )
A.抛掷一枚硬币,正面向上
B.在一个装有5只红球的袋子中摸出一个白球
C.方程x2﹣2x=0有两个不相等的实数根
D.如果|a|=|b|,那么a=b
9、以下事件为随机事件的是( )
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是
10、下列事件是随机事件的是(  )
A.通常加热到100℃时,水沸腾
B.购买一张彩票,中奖
C.明天太阳从东方升起
D.任意画一个三角形,其内角和是360°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在如图所示的电路图中,当随机闭合开关K1、K2、K3中的两个时,能够让灯泡发光的概率为________.
( http: / / www.21cnjy.com / )
2、从3,0,,,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是__________.
3、粉笔盒中有10支白色粉笔盒若干支彩色粉笔,每支粉笔除颜色外均相同,从中随机拿一支粉笔,拿到白色的概率为,则其中彩色粉笔的数量为________支.2·1·c·n·j·y
4、小明和小强玩“石头、 ( http: / / www.21cnjy.com )剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.
5、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
三、解答题(5小题,每小题10分,共计50分)
1、盲盒为消费市场注入了活力.某商家将 ( http: / / www.21cnjy.com )1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中.
(1)如果随机抽一个盲盒,直接写出抽中多接口优盘的概率;
(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率.
2、放假期间,小明和小华准备到白马湖度 ( http: / / www.21cnjy.com )假区(记为A)、金湖水上森林公园(记为B)、盱眙铁山寺国家森林公园(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可能性相同.
(1)小明选择去白马湖度假区的概率是    .
(2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率.
3、有四张大小、质地都相同的不 ( http: / / www.21cnjy.com )透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率.
4、九(1)班为准备学校举办“我的梦●美丽中国梦”演讲比赛,通过预赛共评选出甲、乙、丙三名男生和A、B两名女生共5名推荐人选.
(1)若随机选一名同学参加比赛,求选中男生的概率.
(2)若随机选一名男生和一名女生组成一组选手参加比赛,用树状图(或列表法)表示所有可能出现的结果,并求恰好选中男生甲和女生A的概率.
5、中心广场开展“有奖大酬宾”活动, ( http: / / www.21cnjy.com )凡在“中心广场”消费的顾客,均可凭消费小票参与转转盘抽奖活动.如图,是一个材质均匀可自由转动的转盘,转盘被等分成A,B,C,D,E五个扇形区域,依次写有:洗衣液、欢迎惠顾、牛奶、优惠券和谢谢参与.转动转盘,转盘停止后如果指针所指区域为“洗衣液”、“牛奶”、“优惠券”,则可获得对应的奖品,其他区域则没有奖品.若转盘停止后,指针指向两区域的边界,顾客可以再转动转盘一次,直到指针不指向边界时停止.根据以上规则,回答下列问题:
(1)小王同学转动转盘一次获得奖品的概率是   ;
(2)小李同学有两次转转盘抽奖的机会,请你用列表或画树状图的方法,求小李同学至少有一次获得奖品的概率.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、D
【分析】
用A表示雄性,B表示雌性,画出树状图,共有4个等可能的结果,孵化出的小鸟恰有两个雌性一个雄性的结果有2个,然后根据概率公式计算即可.
【详解】
解:用A表示雄性,B表示雌性,画树状图如图:
( http: / / www.21cnjy.com / )
共有4个等可能的结果,孵化出的小鸟恰有一个雌性一个雄性的结果有2个,
∴孵化出的小鸟恰有两个雌性一个雄性的概率为;
故选:D.
【点睛】
本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
2、A
【分析】
用红球的个数除以所有球的个数即可求得抽到红球的概率.
【详解】
解:∵共有5个球,其中红球有2个,
∴P(摸到红球)=,
故选:A.
【点睛】
此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.
3、D
【分析】
必然事件: 在一定条件下,一定会发生的事件, ( http: / / www.21cnjy.com )叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,2-1-c-n-j-y
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
4、A
【分析】
根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案.
【详解】
解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;
无理数在和之间,正确,故本选项符合题意;
在,,,,这五个数中,无理数有,,共个,则抽到无理数的概率是,故本选项错误,不符合题意;
因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;
若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;
正确的有个;
故选:.
【点睛】
此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键.
5、C
【分析】
根据大量重复试验后频率的稳定值即为概率,进行求解即可.
【详解】
解:∵一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,
∴红球的个数=200×35%=70个,
故选C.
【点睛】
本题主要考查了用频率估计概率,解题的关键在于能够熟练掌握大量重复试验下,频率的稳定值即为概率.
6、B
【分析】
用黑色的小球个数除以球的总个数即可解题.
【详解】
解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,
故摸出的小球是黑色的概率是:
故选:B.
【点睛】
本题考查概率公式,解题关键是掌握随机事件发生的概率.
7、C
【分析】
将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.
【详解】
解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;
B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;
C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;
D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;
故选:C.
【点睛】
本题考查的是必然事件、不 ( http: / / www.21cnjy.com )可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、C
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可
【详解】
解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;
B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;
C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;
D、如果|a|=|b|,那么a=b或a=-b,不是必然事件,不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
9、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然 ( http: / / www.21cnjy.com )事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10、B
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、通常加热到100℃时,水沸腾,是必然事件;
B、购买一张彩票,中奖,是随机事件;
C、明天太阳从东方升起,是必然事件;
D、任意画一个三角形,其内角和为360°,是不可能事件;
故选:B.
【点睛】
本题考查的是必然事件、不可能事件、随机事 ( http: / / www.21cnjy.com )件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、
【分析】
根据题意画出树状图,由树状图求得所有可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.
【详解】
解:设K1、K2、K3中分别用1、2、3表示,
画树状图得:
( http: / / www.21cnjy.com / )
∵共有6种等可能的结果,能够让灯泡发光的有4种结果,
∴能够让灯泡发光的概率为:,
故答案为:.
【点睛】
本题主要考查了概率问题,根据题意画出树状图求得所有可能的结果与能够让灯泡发光的情况是关键.
2、
【分析】
由正比例函数的图象及其性质可判断3,0,,,五个数均符合,由一元二次方程根的判别式可判断出只有,,三个数符合题意,故概率为.
【详解】
∵的图象经过一、三象限


3,0,,,这五个数均符合
关于x的方程其中


解得时关于x的方程有实数根
故,,三个数符合题意
则P=.
故答案为:.
【点睛】
本题考查了正比例函数图象及其性质和一元二次方程根的判别式.当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a,b,c的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.当时,方程有两个相等的实数根,不能说方程只有一个根.21cnjy.com
3、15
【分析】
设彩色笔的数量为x支,然后根据概率公式列出方程求解即可.
【详解】
解:设彩色笔的数量为x支,
由题意得:,
解得,
经检验是原方程的解,
∴彩色笔为15支,
故答案为:15.
【点睛】
本题主要考查了概率公式和分式方程,解题的关键在于能够熟练掌握概率公式列出方程进行求解.
4、
【分析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.21世纪教育网版权所有
【详解】
解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
( http: / / www.21cnjy.com / )
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小强平局的概率为:,
故答案为:.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
5、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
三、解答题
1、(1)抽中多接口优盘的概率为;(2)P(抽中商品总价值不低于80元).
【分析】
(1)利用列举法求解即可;
(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可.www.21-cn-jy.com
【详解】
解:(1)∵随机抽取一个盲盒可以抽到 ( http: / / www.21cnjy.com )蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,21·世纪*教育网
∴抽到多接口优盘;
(2)将蓝牙耳机记为A,多接口U盘记为、,迷你音箱记作C.
则从4个盲盒中随机抽取2个的树状图如下:
( http: / / www.21cnjy.com / )
由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种.【来源:21cnj*y.co*m】
∴P(抽中商品总价值不低于80元).
【点睛】
本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
2、(1);(2).
【分析】
(1)直接利用概率公式求解可得.
(2)先画出树状图,根据树状图可以求得所有等可能的结果以及他们分别去不同景点游览的情况,再利用概率公式即可求得答案.【出处:21教育名师】
【详解】
解:(1)小明选择去白云山游览的概率是;
故答案为:;
(2)画树状图得:
( http: / / www.21cnjy.com / )
∵共有9种等可能的结果,小明和小华分别去不同景点游览的情况有6种结果,
∴小明和小华分别去不同景点游览的概率为.
【点睛】
此题考查随机事件的概率计算,涉及到树状图法表示概率的方法.
3、
【分析】
根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
( http: / / www.21cnjy.com / )
共有16种的可能的情况数,其中两次数字和为5的有4种,
则两次数字和为5的概率实数.
【点睛】
此题考查的是用列表法或树状图法 ( http: / / www.21cnjy.com )求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【来源:21·世纪·教育·网】
4、(1);(2)
【分析】
(1)根据简单概率公式计算即可;
(2)画树状图求概率即可
【详解】
解:(1)共有5人,男生有3人,则随机选一名同学参加比赛,选中男生的概率=;
(2)画树状图为:
共有6种等可能的结果数,其中选中男生甲和女生A的结果数为1,
所以恰好选中男生甲和女生A的概率=.
【点睛】
本题考查了简单概率公式求概率,树状图法求概率,掌握求概率的方法是解题的关键.
5、(1);(2)
【分析】
(1)直接根据概率公式即可得出答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小李同学获得至少有一次获得奖品的情况,然后根据概率公式即可求得答案.21·cn·jy·com
【详解】
解:(1)∵转盘被等分成A、B、C、D、E五个扇形区域,转到区域为“洗衣液”、“牛奶”、“优惠券”,则可领到对应的奖品,21*cnjy*com
∴小王同学转动转盘一次获得奖品的概率是;
故答案为:;
(2)根据题意画图如下:
( http: / / www.21cnjy.com / )
共有25种等情况数,其中小李同学获得“至少有一次获得奖品”的结果有21种,
则小李同学至少有一次获得奖品的概率:.
【点睛】
此题考查的是树状图法求概率,熟练掌握概率公式是解题的关键;用到的知识点为:概率=所求情况数与总情况数之比.【版权所有:21教育】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)